

Leicester School of Pharmacy

Novel Impedance-based Methodologies to Determine the Drying Rate and the Vial Heat Transfer Coefficient during Freeze Drying

Bhaskar Pandya

APS 8th International PharmSci Conference, Sept. 5-7, 2017; Hatfield, UK

Outline

- The Freeze Drying Process
- Problem of Heterogeneity in Freeze Drying
- Mechanism of Coupled Heat and Mass Transfer
- Features of through vial impedance spectroscopy (TVIS)
- Use of Average Temperature from 3 Thermocouples to Calibrate the TVIS system: a justification
- Temperature Calibration of the TVIS system
- TVIS Application in Primary drying
 - Temperature prediction
 - Drying rate
 - $_{\circ}$ Vial heat transfer coefficient (K_v)
- Acknowledgements

The Freeze Drying Process Secondary Drying Freezing 30 Shelf temperature 5 20 Product temperature Temperature / °C -10 -20 -20 -20 -20 -20 -20 -00 10 4 Pressure /mbar **Primary Drying** 3 2 1 Chamber pressure -60 -70 0 10 15 20 25 0 Time /h 0 5 Recooling ပ္ပ -10 Reneating 4 Pressure /mbar 3 2 1 **Glass Vial Temperature Cycling** -50 0 5 Time /h7 8 4

Problem of Heterogeneity in Freeze Drying

• Freeze drying is **heterogeneous**

• Freeze drying is an expensive: Primary Drying is longest!

BIOPHARMACEUTICAL QUALITY BY DESIGN

- Two important parameters
 - Drying rate: most process monitoring devices provide a batch measurement of sublimation rate (e.g. MTM) or use interruption techniques e.g. Gravimetric
 - Product temperature: Single vial temperature sensors are product invasive and alter the heat and mass transfer process, e.g. Thermocouples!

Patel and Pikal (2009) Pharm Dev Tech. 14(6) 567–587

Mechanism of Coupled Heat and Mass Transfer

Pikal et al. (1984) J Pharm Sci. 73 (9) 1224-1237

Through Vial Impedance Spectroscopy (TVIS)

Glass Vial

Electrodes

- Impedance measurements across a vial using copper electrodes attached externally to the glass wall
- Hence "Through Vial Impedance Spectroscopy"

Features

- Single vial, "Non-product invasive"
- Both freezing and drying characterised in a single technique
- Un-perturbing to the packing of vials and stoppering still possible

Use of Average Temperature from 3 Thermocouples to Calibrate the TVIS System: A Justification

BIOPHARMACEUTICAL QUALITY BY DESIGN

DE MONTFORT

BIOPHARMACEUTICAL QUALITY BY DESIGN

DE MONTFORT

IGN

BIOPHARMACEUTICAL QUALITY BY DESIGN

DE MONTFORT

Temperature Calibration Plot

TVIS Application in Primary Drying

Temperature Prediction during Primary Drying

3.5

3.3

First 12 minutes of primary drying

0.10

0.13

0.16

0.20

¥∀3.1 4 82.9 0 2.7

2.5

0.0

0.03

0.06

- Log FPEAK was recorded throughout the freeze drying process
- The calibration equation obtained during Re-heating and Log FPEAK values during primary drying were used to predict T(FPEAK) during primary drying
- Good agreement between TC (average) and T(FPEAK) over the first 10 minutes

Drying Rate Prediction

Drying rates are based on the assumption of a planar sublimation front

Shape of the sublimation front became non-planar after 0.2 h (12 min) and therefore, C"PEAK cannot be assumed to be proportional to ice cylinder height

C"PEAK at 0h = 0.454 pF

C"PEAK at 0.2 h = 0.421 pF

% decrease ~7% within the first 12 minutes

Planar sublimation interface with a fixed area

0 h of primary Drying

Estimation of Vial Heat Transfer Coefficient

Conclusion

- Freeze Drying is heterogeneous
- Existing technologies in the market have limitations
- TVIS
 - single vial technique
 - non-product invasive
 - drying and product temperature of individual vials can be determined in a single experiment across the shelf
 - Time lapse photography along with TVIS measurement showed the drying rate and Kv should be determined within the first 12 minutes that corresponds to ~7% ice sublimation
 - $_{\odot}~$ Kv was ~127 $Js^{-1}K^{-1}m^{-2}$, i.e. 4-8 times higher than the values found in literature.

Acknowledgements, Recent Projects & Collaborators

- De Montfort University
 - Professor Geoff Smith, Dr Irina Ermolina, Evgeny Polygalov, Yowwares Jeerarunangrattana
- GEA Process Engineering
 - Trevor Page & Julian Taylor
 - Daniela Buchmeyer & Thomas Beutler
- BlueFrog : Chris Samwell, Ben Irvin
- NIBSC : Paul Matejtschuk
- Sanofi : Tim McCoy

GEA Pharma Systems

SANOFI 🎝 Innovate UK

Thank You

