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Through Vial Impedance Spectroscopy (TVIS)
Description of Measurement System
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Introduction to the TVIS System

• Impedance measurements across a vial rather than within the vial

• Hence “Through Vial Impedance Spectroscopy”

• Features

• Single vial “non-product invasive”

• Both freezing and drying characterised in a single technique

• Non-perturbing to the packing of vials

• Stopper mechanism unaffected

SV product temperature

SV sublimation rate

SV end point (At-Ap!)
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Freeze drying chamber

Stimulating 
voltage

Resultant 
current

LyoViewTM analysis 
software

LyoDEATM measurement 
software

Junction
box

TVIS system 
(I to V convertor)

Pass through

TVIS 
measurement vial
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Through Vial Impedance Spectroscopy (TVIS)
Theory
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Interfacial Polarization Phenomena

• Interfacial or space charge polarization is one type of dielectric polarization. 

• It refers to the accumulation of charges at an interface between two dielectric 
materials or between two regions within a material when an external field 
applied. 

• This phenomenon occurs when an electric field is applied to a glass vial (a 
dielectric material)  containing a liquid and/or solid (a dielectric material with 
some conductivity).
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Equivalent electrical circuit model

• An equivalent electrical circuit model is created by combining the circuit 
elements which includes the solution resistance (𝑅𝑠) and the the capacitances 
of the glass-solution interface (𝐶𝐺) and the solution (𝐶𝑠) in an appropriate 
configuration of series and parallel elements.

CG is the capacitance of the glass-solution interface, 
CS and RS are the capacitance and resistance of the solution
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• As the frequency increase, 𝐶" increases 
to maximum (𝐶"

𝑚𝑎𝑥 ) 

• a frequency of

• If 𝐶𝐺 > 𝐶𝑆 then

• Which explains the sensitivity of 𝐶″𝑝𝑒𝑎𝑘
to the height of the ice layer

Dielectric loss spectrum

𝐶″𝑝𝑒𝑎𝑘 =
𝐶𝐺
2

2(𝐶𝑆+𝐶𝐺)
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𝐶″𝑝𝑒𝑎𝑘 ≅ 𝐶𝐺
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TVIS Applications
Freezing, Annealing, Primary Drying
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Imaginary Part of Capacitance Real Part of Capacitance

High frequency

Liquid stateLiquid state Frozen solid

Frozen solid

low frequency

Annealing = Re-heating and Re-cooling

Re-heating
Re-heating

Intermediate frequency

Re-cooling

Re-cooling

low frequency

Primary dryingPrimary drying

low frequency

TVIS Response Surface



12Through Vial Impedance Spectroscopy

Through Vial Impedance Spectroscopy (TVIS)

• The capacitance spectrum depends on both the electrical resistance and 
electrical capacitance of the vial contents. 

• Data viewing software (LyoView ™) identifies the peak frequency (FPEAK) 
and peak amplitude (CʺPEAK) in the imaginary part of the capacitance 
spectrum from which various physical properties can be determined

TVIS parameter Application Notes 
(requirements/assumptions)

FPEAK temperature & phase 
(ice & eutectic formation, 
phase separation)

FPEAK  temperature  calibration  
(annealing stage required)

d CʺPEAK /dt drying rate surrogate 80% of 1o drying 
(assumes flat ice front)

C’ (~ 100 kHz) end point of 1o drying C’  (real part of the complex 
capacitance) is highly sensitive 
to low ice volumes
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TVIS Application
Freezing Step

5%w/v Lactose in deionised water
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The relationship between FPEAK and Product 
Temperature/Phase Behaviour

• Both resistance and capacitance parameters impact the peak frequency 

• However the sample resistance (𝑹S) has a greater temperature coefficient so the 
peak frequency is especially sensitive to the electrical resistance of the product.

• It follows that FPEAK can be used to monitor (i) the phase behaviour and (ii) the 
temperatures of both the liquid and solid states. 

• During the solidification process the increased resistance of the frozen phase 
shifts the peak frequency (FPEAK) by two orders of magnitude.

• During the annealing of the frozen phase, a temperature ramp of 40 oC can shift 
the peak frequency (FPEAK) by one order of magnitude.

𝐹𝑝𝑒𝑎𝑘 =
1

)2𝜋𝑹S (𝐶𝑆 + 𝐶𝐺
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Phase separation 
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Ice and the unfrozen fraction

RICE

CICE
CUNFROZEN

RUNFROZEN

CG

Glass wall & 
solution 
interface

Ice 
crystal 

Unfrozen 
fraction

The glass 
interface has  
very high 
resistance; 
therefore it 
behaves primarily 
as capacitor (CI)

Microstructure

Ice has a conductivity (RICE)
and dielectric constant (CICE) 
due to the percolation of 
protons (H+)

A layers of unfrozen fraction between the ice crystals 
have dielectric constants and a conductivities which are 
reflected in CUNFROZEN and RUNFROZEN, respectively.

The latter is strongly dependent on mobile charge 
carriers and hence very sensitive to the viscosity 
(temperature and water content) of  the unfrozen 
fraction . 

CINTERFACE
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Ice Formation

• The thermocouple vial nucleates 
later than the TVIS vial

• C"PEAK may provide a more reliable 
end point for solidification
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y = -45.537x + 194.01

y = -12.802x + 59.493

y = -12.802x + 58.613
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TVIS Application
Annealing for Temperature Calibration

5%w/v Lactose in deionised water
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The relationship between FPEAK and Product 
Temperature/Phase Transition 
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The relationship between FPEAK and Product 
Temperature/Phase Transition 
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• At low temperatures, the two peaks 
are merged, forming one peak below 
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• At higher temperatures > – 20 C the 
two curve separate to some degree

Re-heating

• The two peaks on re-heating are well 
separated at all temperatures 
between – 20 C and – 50 C 
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• Thermal homogeneity of the frozen 
solid demonstrated by two TCS (top 
and bottom)

• FPEAK profile during annealing has 
‘similar’ profile with product 
temperature.

• Assuming thermal equivalence 
between the TC and TVIS vial (?!!) 
then  temperature calibration from 
annealing might be employed for the 
prediction of temperature during 
primary drying

• Re-heating curve selected because of
the wider range of temperatures for
the observation of a single peak

Temperature             Calibration
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TVIS Application
Primary Drying (1) Product temperature prediction

5%w/v Lactose in deionised water
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• Re-heating calibration curve selected 
for temperature prediction in 
primary drying : T(FPEAK)
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production temperature (by TC) and 
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the time profile of each parameter 
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TVIS Application
Primary Drying (2) Drying Rate Prediction

5%w/v Lactose in deionised water
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The relationship between FPEAK and Product 
Temperature/Phase Transition 
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C" PEAK can be considered in three regions

1) A linear region (% of C" PEAK est. on water in isolated vial)

2) A non-linear region

3) An ice cone region – where C" PEAK ~ 0 (use C’ @ high freq.)

• C" PEAK is proportional to the height of the ice cylinder bounded by the 
electrode region, through the value of CG

• Drying rates are based on the assumption of a planar sublimation front

• Below the electrode C" PEAK loses sensitivity to ice layer height (non-linear)

• C" PEAK cannot be used for end point determination: use C’ @ high freq. instead.

C" PEAK Criteria & Assumptions

Linear region

Non-linear region

C”PEAK

Height of ice layer, h

Height of ice layer below the electrode, hbe

Height of ice layer at the 
electrode region, he

80%
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Drying Rate (dm/dt) 
Determination
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TVIS Application
Primary Drying: Rp determination

5%w/v Lactose in deionised water
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Lactose Dried Product 
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TVIS Application
Primary Drying: Kv determination
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• The product temperature (𝑇𝑃𝑅𝑂𝐷𝑈𝐶𝑇 ), which derived by TVIS as T(FPEAK) or by 
thermocouple (TC), is one of parameters needed for KV determination

Re-Heating

Calculate 
𝑇𝑃𝑅𝑂𝐷𝑈𝐶𝑇 from 
Log FPEAK (TVIS)

T (FPEAK)  −34.2 oC

TC

TSHELF −20 oC

• Sublimation rate (dm/dt) 
is estimated by TVIS

• Test sample is 2 mL water 
filled in 10 mL vial

Drying rate (dm/dt) 
~ 0.3 g/h

𝑇𝑃𝑅𝑂𝐷𝑈𝐶𝑇 and dm/dt
from TVIS

KV

determination

Applying 
vacuum
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Heat Transfer Coefficient (KV) Determination
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Heat Transfer Coefficient (KV) Determination
• First convert dm/dt to dq/dt using 

the latent heat of sublimation 
(L = 2844 J g-1 )

dm/dt = 0.3 g/h

L = 2844 J g-1

dq/dt = 853 J/h

Brülls, M., and Ramusson, A. (2002) Heat Transfer in Lyophilization. Int
J Pharm 10;246(1-2):1-16.

Kv values for 10 mL tubing vials (2 mL fill volume)
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Thank you
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Annex : TVIS Theory
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Equivalent circuit model

Ionic diffusion layer (dI )
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Through Vial Impedance Spectroscopy

• Impedance is a frequency dependent parameter largely because the 
impedance of a capacitance is dependent on the frequency of the applied 
field, whereas an ideal resistor has zero frequency dependence
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Through Vial Impedance Spectroscopy

• In the case of a composite object that has both capacitance and resistance
then the impedance spectrum that results will be dominated by one or the 
other element. 

In a series circuit 
@ low frequency the capacitor dominates the 
spectrum because the impedance of the 
capacitance is so high that the capacitor 
effectively controls the current that flows 
through the circuit
@ high frequency the resistor dominates the 
spectrum because the impedance of the 
capacitor has fallen below that of the resistor 
such that the resistor effectively controls the 
current that flows through the circuit

Impedance Spectroscopy
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Through Vial Impedance Spectroscopy

• In the case of a composite object that has both capacitance and resistance
then the impedance spectrum that results will be dominated by one or the 
other element. 

In a parallel circuit 
@ low frequency the resistor dominates the 
spectrum because the impedance of the 
capacitance is so high that all the current flows 
through the resistor.
@ high frequency the capacitor dominates the 
spectrum because the impedance of the 
capacitance is now lower than the resistor 
such that all the current now flows through the 
capacitor.
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Through Vial Impedance Spectroscopy

• More complex composite objects can be considered as combinations of 
impedances. Again, the impedance spectrum that results will be dominated 
by one or the other impedance. 

In a complex circuit 
@ low frequency (<1 kHz) the resistor R1 dominates the 
impedance of the R1C1 circuit, but because this circuit is 
in series with a capacitor , C2 (which has a high 
impedance at low frequency) then C2 effectively controls 
the current that flows through the entire circuit
@ intermediate frequency (1-30 kHz) the impedance of 
C2 drops below that of the resistor, such that the resistor 
begins to dominate the impedance and therefore the 
phase angle tends to increase from -90  to zero
@ high frequency (>30 kHz) the impedance of the 
capacitor, C1, which is in parallel with the resistor, 
decreases below that of the resistor such that the 
resistor no longer dominates the impedance of the 
parallel RC circuit so then the circuit behaves like two 
capacitors in series but with C1 dominating the spectrum
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Through Vial Impedance Spectroscopy

• The impedance spectrum of complex element can be presented as the 
capacitance spectrum
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Through Vial Impedance Spectroscopy

• At ω→0, 𝐶" = 0

• As the frequency increase, 𝐶" increases 
to maximum (𝐶"

𝑚𝑎𝑥 )then decreases to 

zero as the frequency ω→∞

• At a frequency of

Interfacial Polarization Characteristic
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Through Vial Impedance Spectroscopy

Interfacial Polarization Characteristic
• The impedance of the model can be calculated from the following equation

𝑍∗Total = 𝑍∗ 𝐶G + [
1

𝑍∗ 𝑅S

+
1

𝑍∗ 𝐶S

]

𝑍∗Total =
1

𝑖𝜔𝐶𝐺
+

𝑅𝑆
1 + 𝑖𝜔𝑅𝑆𝐶𝑆

which re-arranges to 

𝑍∗Total =
1 + 𝑖𝜔𝑅𝑆(𝐶𝐺 + 𝐶𝑆)

𝑖𝜔𝐶𝐺 + 𝑖𝜔2𝑅𝑆𝐶𝐺𝐶𝑆

• Impedance can be expressed in terms of a complex capacitance

𝐶∗
Total =

1

𝑖𝜔𝑍∗Total

=
𝐶𝐺 + 𝑖𝜔𝑅𝑆𝐶𝐺𝐶𝑆

1 + 𝑖𝜔𝑅𝑆 𝐶𝐺 + 𝐶𝑆

• The complex capacitance can also be expressed in form of real part and imaginary part

𝐶∗ = 𝐶′ + 𝑖𝐶″

• From the complex capacitance formula, the expressions for real and imaginary 
capacitance can be calculated to explain the origin of interfacial polarization peak. This 
achieved by multiplying the nominator and denominator by the complex conjugate of 
the denominator and by grouping the real (𝐶′) and imaginary (𝐶″) parts

𝐶′ =
𝐶𝐺+𝜔

2𝑅𝑆
2𝐶𝐺𝐶𝑆 𝐶𝑆+𝐶𝐺

1+ 𝜔𝑅𝑆 (𝐶𝑆+𝐶𝐺
2 and 𝐶″= −

𝜔𝑅𝑆𝐶𝐺
2

1+(𝜔𝑅𝑆((𝐶𝑆+𝐶𝐺))2


