

1

Responsible Development of Smart Information Systems:

Technical Options and Interventions

D3.5 (1st part): April 2020

This project has received funding from the

European Union’s Horizon 2020 Research and Innovation Programme Under Grant Agreement no.
786641

2

Authors

Samuel Marchal, Senior Data Scientist, F-Secure Corporation (samuel.marchal@f-secure.com)

David Karpuk, Senior Data Scientist, F-Secure Corporation (david.karpuk@f-secure.com)

Alexey Kirichenko, Research Collaboration Manager, F-Secure Corporation (alexey.kirichenko@f-
secure.com)

Acknowledgements

We would like to thank Doris Schroeder, Bernd Stahl, the Artificial Intelligence Center of Excellence
team at F-Secure, and the SHERPA Stakeholder Board members for comments and helpful discussions.

mailto:samuel.marchal@f-secure.com
mailto:david.karpuk@f-secure.com
mailto:alexey.kirichenko@f-secure.com
mailto:alexey.kirichenko@f-secure.com

3

Document Control

Deliverable D3.5 (1st part)

WP/Task Related WP3, Task 3.5

Delivery Date April 30, 2020

Dissemination Level PU

Lead Partner FSC

Contributors UCLan Cyprus

Reviewers Doris Schroeder, Bernd Stahl

Abstract This report presents a study of model poisoning attacks on models from a
popular class of anomaly detection algorithms and provides a number of
defense recommendation.

Key Words Data poisoning attacks, model poisoning attacks, anomaly detection, online
distributed learning, federated learning, statistical distribution models with
thresholds, backdoor poisoning attacks

4

Table of Contents

Acronyms and terms 5

Executive Summary 6

Introduction 7

1. Background 10

1.1 Online machine learning 10

1.2 Distributed and federated learning 10

1.3 Model poisoning of online distributed training 12

1.3.1 Adversary’s goal 13

1.3.2 Attack surface 14

1.3.3 Adversarial capabilities 14

2. The model to attack 15

2.1 Statistical distribution model with thresholds 15

2.2 Process Launch Distribution (PLD) model 15

2.3 Distributed online training of PLD model 18

2.4 Poisoning PLD model 19

3. Model poisoning approaches 20

3.1 Experimental setup 20

3.2 ‘Increase target process launch count’ approach 21

3.2.1 Attack description and implementation 21

3.2.2 Experimental results 22

3.3 ‘Decrease parent or child process launch count’ approach 25

3.3.1 Attack description and implementation 25

3.3.2 Experimental results 26

3.4 ‘Inject rare process launch events unrelated to the attack’ approach 28

3.4.1 Attack description and implementation 28

3.4.2 Experimental results 29

4. Defense recommendations 33

5. Conclusion 37

References 38

5

Acronyms and terms

Term Explanation

AI Artificial intelligence

Backdoor attack A model poisoning attack where the goal is to decrease the performance of a
target ML model for a set of selected inputs

Denial-of-service
attack

A model poisoning attack where the goal is to decrease the performance of a
target ML model as a whole

Distributed training An approach where training data come in multiple parts owned and
contributed by multiple parties

i.i.d. independent and identically distributed (applied to random variables)

ML Machine Learning

ML model An artifact created by a training process of an ML algorithm

Normalisation Adjusting values, often measured on different scales, to bring them into
alignment

Online training An approach where models are periodically and incrementally updated when
more training data become available

PLD Process Launch Distribution, the model this report focuses on

Poisoning attack Model poisoning, or data poisoning, is a class of training-time attacks on ML-
based systems

SIS Smart Information Systems: The combination of artificial intelligence and big
data analytics

6

Executive Summary

The main purpose of this report is to systematically investigate attack strategies and – based on the
analysis – introduce technical defense options and interventions for the responsible use of Artificial
Intelligence (AI). The presented study focuses on model poisoning attacks against services powered
by Machine Learning (ML) models trained in the online fashion on distributed data from uncontrolled
environments (see figure).

Machine learning model training using distributed data owned by multiple clients

To discover and analyse model poisoning attacks (primarily backdoor attacks, but with some denial-
of-service effects as well) against online distributed training and to assess their potential impact, we
select a popular class of models and consider carefully defined and realistic adversaries targeting such
models.

In our analysis and experiments, we show how an adversary can achieve their goals despite lack of
knowledge and control over the training contributions of the benign clients. We also show that the
poisoning attacks we simulated in the experiments are hard to detect due to their relatively modest
scale, which makes it difficult to distinguish them from ordinary variations and concept drift effects.

Learning from the identified vulnerabilities, we provide and illustrate a set of recommendations for
detecting and mitigating poisoning attacks against models of the considered class. In particular, the
following can help stop attacks, make them costlier for the adversary, or significantly reduce their
impact:

1. input validation,

2. normalisation of client contributions (local models or data points),

3. monitoring of contributions of each client over time to detect anomalies, and

4. strong client authentication.

At the same time, we observe that such defence approaches as detecting outliers among contributions
of multiple clients in a single round of online training and rejecting local models with a large distance
to the global model are often problematic due to their low precision resulting in high false alert rates.

Since the analysed poisoning approaches are applicable to many models successfully used in digital
services in multiple domains, our results should be considered a strong warning for organisations
developing and operating such services.

7

Introduction

Attacks on AI systems is a serious concern. Reliability of AI systems in the presence of determined
adversaries and resilience to their attacks are of a high importance, since a system controlled, even
partially, by an adversary can hardly be considered trustworthy, and one can expect to see violation
of multiple values and human rights of the users of such a system. At the same time, with the growing
popularity of AI systems and importance of those for our society, they are naturally becoming more
attractive targets for attackers.

As in many other domains, Machine Learning (ML) techniques, which power a large share of modern
AI systems, were originally designed for benign and controlled environments. That assumption,
unfortunately, does not hold in numerous practical applications of ML models today. There are many
ways for attacking ML-based systems, both at training and inference time, and their dependence on
data, often coming from uncontrolled environments, significantly broadens the attack surface. In
particular, model poisoning, or data poisoning, is an important class of training-time attacks on ML-
based systems wherein an attacker injects mislabelled or mis-distributed data into the training process
to degrade the performance of ML models. Among multiple types of attacks in the context of ML, data
poisoning stands out by deeply exploiting properties specific to ML approaches, it is a threat
essentially brought by ML.

While injecting data points of their choice is not always possible or affordable for attackers, there are
many practically successful systems, the setup of which provides adversaries with rich poisoning
opportunities. A good example of such are systems with underlying ML models trained online and
using distributed training data, which means essentially that (i) their training data come in multiple
parts from devices and environments owned by multiple parties, and (ii) their models are periodically
and incrementally updated when more training data become available. In this group, one finds, for
instance, search engines, systems utilizing sentiment analysis of user opinions and other
recommender systems, intrusion and malware detection services, and social media chatbots.

A number of poisoning attacks against such systems have been proposed and studied, and some
interesting theoretical results have been reported. Nevertheless, there are almost no flashing media
stories about major incidents related to data poisoning1, and it seems that the level of concern among
organisations running services based on ML models susceptible to poisoning attacks, policy-makers,
and general public (including users of those services) is quite low. This is perhaps unsurprising, as the
experience with cybersecurity showed that unless actual devastating security incidents take place or,
at least, fully practical and devastating attacks are demonstrated in certain venues, the industry – and
the society in general – are slow and unwilling to invest in fixing vulnerabilities and building better
defences.

1 One rare example is the Tay AI chatbot case (https://www.theverge.com/2016/3/24/11297050/tay-microsoft-
chatbot-racist), and it dates back to March 2016.

This report investigates the threats that data
poisoning attacks pose to Machine Learning (ML)
and statistical models, considered an important
subclass of AI, and their use in various applications.

https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist

8

As one of the top objectives of the SHERPA project is to increase awareness about problems and risks
associated with the development and use of AI-based systems, the main goal set for the first stage of
the project’s technical interventions work in Task 3.5 was, therefore, to emphasize the importance of
reliable and attack-resilient AI via designing and analysing practical high-impact poisoning attacks
against a popular class of ML models trained in the online distributed fashion. Based on the analysis
of the attacks, we also propose defence approaches, which will be further studied, generalised and
included in the SHERPA’s ‘intelligent mix’ of recommendations in the second stage of Task 3.5.

To construct practical attacks and assess their impact, one has to select a sufficiently specific attack
target, preferably representing well a wider class of systems used in real-life applications. Taking into
account the considerations presented above and informed by the SHERPA project work in WP1
(primarily, the work of Task 1.3 on Security Issues, Dangers and Implications of Smart Information
Systems and the case study interviews and analysis in Task 1.1) and discussions with the SHERPA
Stakeholder Board members, we chose to focus on resilience to poisoning attacks of one ML-based
anomaly detection system that can be used in the cybersecurity domain.

Anomaly detection is widely used in cybersecurity since it is an effective method to detect unknown
and sophisticated attacks [ATK’15, CBK’09, DS’07, MRR’12]. In general, the method is based on
modelling the normal, or benign, behavior of computing devices, networks and systems in the absence
of attacks and then using learned models to detect attacks as deviations or anomalous behavior. By
design, anomaly detection-based security mechanisms do not need any prior knowledge about
attacks, they only require examples of normal behavior [CBK’09, SP’10]. The approach is especially
useful for countering determined and skillful attackers investing into developing novel attack tactics
and techniques.

Online training using distributed data is a common setup for training anomaly detection systems for
two reasons. First, it enables leveraging large amounts of diverse data (reported usually by a large
number of parties) in order to model comprehensively all possible types of normal behavior. Second,
updating models on a regular basis enables adapting to changes and capturing evolving normal
behavior.

The system selected as the study target detects anomalous process launch events in a computer by
modelling the distribution of typical process launches and comparing new events with that
distribution. More specifically, the underlying system’s model belongs to the class of models named
statistical distribution with thresholds (explained in Section 2.1). While simple, models of this type can
be applied to many use cases and are easy to understand. Consequently, they are widely used in
cybersecurity and many other domains.

In security applications, it is prudent to assume that adversaries know the design and parameters of
defense mechanisms and will try to compromise the effectiveness of those, in particular, reducing
their attack detection power. This assumption naturally applies to ML-based anomaly detection
systems: cyber criminals want their attacks to remain undetected and look for ways to bypass anomaly
detection mechanisms [BR’18, HJN+’11, PMS+’18], which can be achieved by influencing their
underlying models, in particular, via model / data poisoning attacks.

As introduced above, data poisoning [BNL’12, CSL+’08, HJN+’11] is an attack in which an adversary
modifies a fraction of training data with the goal of decreasing the performance of ML models trained
using the data. In the case of anomaly detection-based security systems, this decrease in performance
corresponds to a decrease in attack detection capabilities. Poisoning attacks typically fall in one of the
following categories:

• Denial-of-service attack, where the goal is to decrease the performance of a target ML model
as a whole. The predictive accuracy of the ML model will decrease for any input (or a majority

9

of inputs) submitted to it. This means the poisoned anomaly detection system will not be able
to distinguish normal / benign inputs from anomalous / malicious ones.

• Backdoor / Trojan attack, where the goal is to decrease the performance of a target ML model
for a set of selected inputs. The predictive accuracy of the ML model will decrease only for
inputs selected by the attacker, but must be preserved for any other inputs. This means the
poisoned anomaly detection system will not be able to detect a particular attack while
remaining effective at distinguishing other anomalous / malicious inputs from normal / benign
ones.

Goals and scope of poisoning attacks and techniques used to carry them out can vary widely. Backdoor
attacks are typically stealthier, that is, more difficult to detect, than denial-of-service attacks because
the former do not manifest in an overall decrease in model performance. They are also more relevant
in the security domain where one of the first goals of an adversary is usually to avoid the defensive
anomaly detection system alerting on their specific cyberattack. Consequently, in the first stage of
Task 3.5, we chose to study backdoor poisoning attacks2.

We introduce three poisoning attack techniques against the chosen anomaly detection model and
evaluate their effectiveness and other key properties with respect to several natural adversarial goals.
While targeted at the anomalous process launch detection system, our three attack techniques
generalize to essentially any statistical distribution model with thresholds. We also present a number
of recommendations for detecting and mitigating impact of the considered attacks.

At the project level, our goal for the future work is to communicate the importance of reliable and
attack-resilient AI and to draw attention to data / model poisoning attacks and ways of countering
those. SHERPA, actively working on AI guidelines and options for standards and regulations in WP3
and closely communicating with the members of its impressively strong project Stakeholder Board (in
the framework of WP2), is perfectly positioned for bringing our results and recommendations to the
stakeholders. We believe that understanding of dangers and extents of attacks and optimal mitigation
strategies and measures is crucial not only for AI developers and providers of AI-powered digital
services but also for users of those services, in order to maximize the benefits that AI systems bring
and to minimize associated risks.

The remaining part of this report is organized as follows. Section 1 provides background information
on online machine learning, distributed training and poisoning attacks. Section 2 presents the ML
anomaly detection model which we study and experiment with in the report. It also presents the data
poisoning goals and an overview of the three attacks we design and analyze. In Section 3, we describe
in detail the three poisoning attacks and assess them as applied against the anomalous process launch
detection model. Section 4 provides recommendations for countering poisoning attacks against
statistical distribution models. The study and the lessons learned are summarized in the Conclusion
(Section 5).

2 We note that one of the studied attacks brings some denial-of-service effects as well.

In this report, we present the study of backdoor
poisoning attacks targeting an anomaly detection
system practically relevant for the cybersecurity
domain.

10

1. Background

1.1 Online machine learning

Online machine learning or online training is a machine learning approach which recognizes that
training data become available in portions in a sequential order, continuously or periodically. As new
data samples become available, online training is used to incrementally update a machine learning
model with new data. This is in contrast to batch training where a training set is collected until a certain
point in time and, once the collection is completed, a model is trained using this static dataset and will
not change afterwards (but may, of course, be eventually replaced by a new model). Batch training is
a one-time operation and the resulting model is used without further updates.

Online machine learning is typically used in two main scenarios:

• When a training dataset is statically defined (i.e. it does not evolve) but too large to be used
at once for training a model. The data is then processed in small portions to incrementally
update the model in order to make it computationally feasible to use the entire dataset. Such
training techniques as Stochastic Gradient Descent (SGD) represent online machine learning
approaches addressing the challenges of this scenario.

• When a training dataset evolves over time and a model needs to dynamically adapt to new
patterns and other properties of the data. Then the model is updated on a regular basis,
sometimes very frequently, as new data samples are available. Model updating methods can
use either only the most recent data samples (not used earlier) or add to those some of the
earlier collected samples (e.g. in the sliding window fashion).

ML-based anomaly detection methods typically use online training for the reason discussed in the
second scenario. The behavior of a system to model usually evolves over time due to various internal
and external factors, which is referred to in the ML domain as concept drift. Anomaly detection models
must capture concept drift changes in order to remain effective. In the cybersecurity context, in
particular, the inability to learn new behavior leads to large numbers of false alarms due to detecting
novel innocent events as anomalous and potentially malicious, which is often a major problem.

1.2 Distributed and federated learning

Distributed learning refers to a machine learning process which is distributed among multiple data
owners, or clients, and coordinated by a central entity called aggregator. Clients and aggregator
collaborate to train a common global ML model G, based on all the available training data. There are
multiple ways to carry out distributed training, and we present here two approaches which are the
most relevant for our study.

The first approach is called data aggregation and it considers clients only as sources of data with no
processing capabilities. In other words, training data is distributed among multiple clients, and model
training operations are fully carried out by an aggregator. Local datasets 𝐷𝑖 are submitted by each
client and aggregated into a global dataset 𝐷 by the aggregator. The aggregation process in this
scenario comes down simply to merging all the client-specific datasets 𝐷𝑖 into the global dataset as
follows:

𝐷 = ⋃ 𝐷𝑖

𝑖 ∈ 𝐶

11

where 𝐶 is the set of all the clients participating in the distributed training process. The aggregator
then uses the global dataset 𝐷 to train a global model 𝐺 using model training techniques selected by
data analysts of the aggregator entity, as depicted in Figure 1.

Figure 1: ML model training using distributed data owned by multiple clients.

The second approach is called federated learning, and it delegates parts of the training process to
clients [BEG+’19, KMY+’16, MMR+’17]. Instead of providing their local datasets for merging into a
global centralized dataset, each client uses their 𝐷𝑖 to train a local model 𝐿𝑖. These local models are
sent to the aggregator instead of the local training datasets. The aggregator then uses a specific
procedure in order to aggregate all the local models 𝐿𝑖 into the global model 𝐺. While federated
learning also leverages all the local data 𝐷𝑖 owned by the clients in order to train 𝐺, in contrast to plain
data aggregation, the clients do not have to expose their local data. Thus, federated learning has a
number of advantages over data aggregation, including: (i) communication efficiency [KMY+’16,
MMR+’17] because local models typically have significantly smaller sizes than the datasets they are
trained on; and (ii) privacy-preserving [GKN’17] because potentially sensitive data owned by the
clients do not need to be shared with any other parties. Federated learning also distributes
computational efforts, offloading a part of the aggregator computations to the clients, which can be
desirable when the client devices have unused processing power (which is often the case for modern
computers and mobile devices).

More generally, the federated training process can be iterative and composed of several
communication rounds performed at successive times t. If all the clients take part in each round, this
is essentially about training in the online fashion. Alternatively, the aggregator can select (usually
randomly) only a fraction of the clients for each round, and then multiple rounds are required for
ensuring sufficiently high representation of the clients in the training. This process is depicted in Figure
2 and it consists of repeating the following four steps:

1. The aggregator sends the global model at time t, 𝐺𝑡, to every (selected) client.

2. Each client updates 𝐺𝑡 using their local dataset 𝐷𝑖 to obtain a local model at time t, 𝐿𝑖
𝑡.

3. Each client sends their local model 𝐿𝑖
𝑡 to the aggregator.

4. The aggregator aggregates all 𝐿𝑖
𝑡 into the new global model at time (t+1), 𝐺𝑡+1.

12

Figure 2: Federated learning of a global ML model using local models from multiple clients.

Several aggregation algorithms exist to combine local models 𝐿𝑖
𝑡 into a global model 𝐺𝑡. The most

common is called Federated-Averaging [KMY+’16, MMR+’17]. It is defined by the following formula as
the weighted sum of local models from each (selected) client:

𝐺𝑡+1 = ∑
𝑛𝑖

𝑁
 × 𝐿𝑖

𝑡

𝑖 ∈ 𝐶

where 𝑛𝑖 is the size of 𝐷𝑖, 𝑁 is the size of 𝐷, and 𝐿𝑖
𝑡 is the local model of client i at time t. Each local

model is weighted with a coefficient accounting for the number of data samples contained in the local
dataset that was used to train it. The coefficients are scaled by dividing the local dataset sizes by the
total number of data samples owned by all the clients (or all the selected clients). This approach gives
local models trained on large amount of data a larger impact on what the global model will be.

1.3 Model poisoning of online distributed training

To discover and reason about model poisoning attacks targeting online distributed training and to
analyse their potential impact, we define here a model of adversary, most importantly, their goals,
properties and capabilities. We assume that the aggregator is a trusted party in the distributing
training process and an adversary is one or several malicious clients participating in the training of the

global model 𝐺. The adversary contributes local datasets 𝐷𝑖 or local models 𝐿𝑖
𝑡 to the online distributed

learning process. Contributions from the adversary can be repeated over time due to the online nature

of the training setting, where new data are periodically used to update the global model: 𝐺𝑡 → 𝐺𝑡+1.
This means the adversary has the capability to submit several local datasets or local models over time.
We now proceed to define the goal, attack surface and capabilities of the adversary in model poisoning
attack on online distributed training.

13

1.3.1 Adversary’s goal

The goal of the adversary is to perform a data poisoning attack, affecting the global model 𝐺. This
attack can be either a denial-of-service attack or a backdoor attack, which are described and
formalized as follows:

• Denial-of-service attack sets a goal to decrease the performance of the ML model as a whole
[BNL’12, CSL+’08, HJN+’11]. The predictive accuracy of the ML model will decrease for any
input (or a majority of inputs) submitted to it. More specifically, this means that the accuracy
of the poisoned model 𝐺𝑝 will be significantly lower than that of the non-poisoned model 𝐺

on a test set randomly sampled from the input space. A denial of service poisoning attack is
successful if the following condition is met (with 𝐴𝑐𝑐(𝐺) denoting the predictive accuracy of
𝐺 on a random test set):

 𝐴𝑐𝑐(𝐺𝑝) ≪ 𝐴𝑐𝑐(𝐺), which clearly means 𝐺𝑝(𝑥) ≠ 𝐺(𝑥) for a large share of 𝑥.

• Backdoor / Trojan attack sets a goal to decrease the performance of the ML model for a set
of selected inputs [CLL+’17]. The predictive accuracy of the ML model will decrease only for
the set of inputs selected by the attacker, which is called a trigger set, and we denote it by 𝑇.
For the inputs from 𝑇, the poisoned model 𝐺𝑝 must output predictions defined by a backdoor

function 𝐵. 𝐵 is defined by the adversary, and we naturally have 𝐵(𝑥) ≠ 𝐺(𝑥). The accuracy
of 𝐺𝑝 must be preserved for any inputs that are not a part of 𝑇. A backdoor poisoning attack

characterized by a trigger set 𝑇 and a backdoor function 𝐵 is successful if the following
condition is met:

 𝐺𝑝(𝑥) = {
 𝐺(𝑥) ∀ 𝑥 ∉ 𝑇
𝐵(𝑥) (≠ 𝐺(𝑥)) ∀ 𝑥 ∈ 𝑇

A secondary, but still important, goal for any poisoning attack is to achieve its primary goal with
‘minimal malicious action’. Minimality can be interpreted as either minimal modifications to original

local datasets 𝐷𝑖 or models 𝐿𝑖
𝑡 or a minimum number of local datasets 𝐷𝑖 or models 𝐿𝑖

𝑡 to poison. The
first reason for targeting minimality of the malicious action is that there may be restrictions on the
amount of data and the number of local models a single client can contribute to the distributed
training process (e.g., one local model per communication round and per client in federated learning).
Limiting the ‘budget’ for a poisoning attack increases its chance of success if such restrictions are in
place. The second reason is achieving stealthiness of an attack. If a poisoning attack requires significant
modifications to local datasets and models, those will likely be very different from datasets and
models of other (benign) clients of the distributed training. Then adversarial datasets and models can
be identified as anomalous by the aggregator and the poisoning attack can be detected and blocked.

Backdoor poisoning attacks are stealthier and more difficult to detect than denial of service attacks
[WYS+’19]. Denial of service attacks can often be easily noticed since the poisoned global model has
an overall decrease in performance / accuracy. In contrast, backdoor attacks do not decrease the
model performance for most of the inputs to the global model. The aggregator, or the model users,
can only notice that the model has a backdoor by submitting inputs from the trigger set to the model.
So, in order to detect a backdoor attack, one needs:

a) knowledge and availability of samples from the trigger set;
b) correct labels for those trigger set samples; and
c) knowledge that the non-poisoned model would not make prediction errors on those trigger

set samples (i.e., the errors are introduced by the attacker).

14

We also note that even if we discover that a global model is poisoned, identifying the client(s)
responsible for the attack can be challenging.

1.3.2 Attack surface

We consider the adversary to be (controlling) a client in an online distributed training process.
Malicious clients have the same access to the training process as any other client. This means that
their only interaction with the training process is the submission of at most one local dataset 𝐷𝑖 or

model 𝐿𝑖
𝑡 per communication round and per controlled malicious client. If the adversary controls

several clients, they can distribute the poisoning attack among several local models and datasets
contributed by those clients. Since 𝐺 is learned in the online fashion, the adversary can also distribute
the poisoning attack over several submissions of local models and datasets.

1.3.3 Adversarial capabilities

Poisoned data injection. We consider fully online adversaries that can only inject poisoned local
datasets and models to the regular stream of local datasets and models. The adversary cannot modify
datasets and models submitted by other benign clients participating in the training process. The
properties, contents and numbers of injected poisoned datasets and models are freely defined by the
adversary, within the restrictions of the target online learning method (i.e. one local dataset and
model per communication round and per client the adversary controls).

Number of compromised clients. The adversary can control multiple compromised clients. Each
controlled client increases the adversarial capability to inject poisoned datasets and models. An
increased number of compromised clients can increase either the effectiveness of the attack (by
combining the poisoning capabilities of the compromised clients) or the stealthiness of the attack (by
distributing poisoning data across the compromised clients). We assume that the adversary cannot
compromise a dominant share of all the clients participating in the online training, so there is always
a large share of benign clients that contribute benign data and models. In particular, if the total
number of clients is N, we assume that the adversary cannot control more than N/2 clients. Of course,
if an aggregation algorithm prioritizes local models trained on larger datasets (e.g. as discussed in the
end of Section 1.2), the clients controlled by the adversary can exploit that to ‘inflate’ their impact.
However, if their number is small, their contributions will look anomalously high, which helps detect
their activities. So, the upper bound on the number of compromised clients is meaningful even in such
scenarios.

Model knowledge. We assume that the adversary knows the type of the machine learning model
being trained and its hyper-parameters. This assumption is obvious in federated learning cases where
each client trains their own local model and receives evolving global models from the aggregator. To
make the adversary stronger, we assume the same knowledge in the data aggregation scenario, even
though global models are not necessarily shared with clients in this case.

Then we consider the following two cases of additional model knowledge:

• Weak adversary does not know the parameters of the global model 𝐺𝑡 at time t. The global
models are hosted on the central server and confidential from the client perspective. This is
typically the case in the data aggregation mode of distributed training. A weak adversary may
have partial access to 𝐺𝑡 nevertheless, through a model query interface providing model
predictions for submitted inputs.

• Strong adversary knows the parameters of the global model 𝐺𝑡 at time t. The global model is
shared with each client after each communication round and aggregation of the local models.

15

This is typically the case in federated learning, where local models 𝐿𝑡
𝑖 are trained based on the

global model 𝐺𝑡.

2. The model to attack

In this section, we present the ML model we chose for the study. We take the problem of anomaly
detection as our study case, more precisely, detection of anomalous process launches in a computing
system. The model we studied, selected as a realistic attack target, is simple yet effective and similar
to models that could be used in real-life defence systems. It models the distribution of process launch
events in client machines and detects events anomalous for this distribution. This type of model is
referred to as statistical distribution with thresholds and it is presented in Section 2.1. Models of this
type can be applied to many practical use cases, they are easy to understand and, consequently, they
have numerous real-life applications in various domains.

In Section 2.2, we present a concrete instance of a statistical distribution model with thresholds that
can be used for the purpose of detecting anomalous process launches in computers. This model is
called Process Launch Distribution (PLD), and it is trained in a federated and online manner as
described in Section 2.3.

Finally, we propose a general attack scenario against the PLD model in Section 2.4 and introduce three
poisoning attack techniques which will be analysed in detail in Section 3.

2.1 Statistical distribution model with thresholds

We chose to study one of the simplest but also very popular and effective methods for anomaly
detection. This method detects anomalies as deviations from an observed distribution or, more
precisely, as rare events with respect to an observed distribution. It requires:

1. To define a score function for quantifying events
2. To model the distribution of the score values computed for the events in the training set and
3. To use the modelled distribution to define threshold(s) that separate common / normal events

from rare / anomalous events

When applied to computer security, an underlying assumption of this method is that benign events in
a training set are much more frequent than events connected with attacks. The defined score function
is computed on the training set events, and the distribution of the obtained score values becomes the
model. Using this distribution, one or several threshold values can be assigned, which separate normal
events, where the distribution is dense, from anomalous events, where the distribution is sparse. At
the inference time, when new events come, we compute their score values and compare them with
the assigned threshold values. Based on this comparison, we can see how anomalous a specific event
is, depending on how dense the model distribution is in the interval (between two consecutive
threshold values) which the event belongs to.

2.2 Process Launch Distribution (PLD) model

A highly useful application of the statistical distribution modelling approach in computer security is a
method for detecting anomalous process launch events in a computing system. Operations in
computing systems are carried out by so-called processes, instantiating at run-time software programs
and containing their code, resources, activities, etc. Processes start each other in various ways, for
example, a web browser typically starts a PDF reader to open a PDF file found on the Internet. An

16

action of a parent process starting, or launching, a child process is called a process launch event. Such
events can often be used for reliable identification of attempts of cybercriminals to compromise
computing systems. On the one hand, many process launch events are observed frequently in nearly
all computers and can be considered a part of their normal benign activities. Here are a few examples

of popular process launch events represented as (parent process → child process) ordered pairs:

• java.exe → cmd.exe

• cmd.exe → conhost.exe

• cmd.exe → find.exe

• SearchIndexer.exe → SearchFilterHost.exe

On the other hand, some process launches are very rare, anomalous and typically a sign of malicious
activities. Here are a few examples of suspicious process launch events:

• winword.exe → cmd.exe

• SQLAGENT.EXE → conhost.exe

• chrome.exe → rundll32.exe

Analysis shows that the most reliable signs of attacks are events where common processes are used in
anomalous ways. In the context of process launch, this corresponds to a common parent process
starting a common child process, but their ordered pair is rare. For instance, winword.exe often starts
other processes and cmd.exe is often started by other processes, but it is very unusual to see
winword.exe starting cmd.exe. Such an event is a strong signal of a spear-phishing attack, and a similar
logic can be applied to a number of other process launches related to malicious activities. At the same
time, if the parent process or the child process in a given pair is rare itself, using such events for raising
security alerts is risky. There are many benign processes which are seen very rarely and, of course, any
event including one or two such processes is rare as well but not necessarily connected to any
cyberattacks. A good example of such processes is customized software installers. Since false alerts
are highly undesirable in security monitoring, a good model should not consider events with rarely
seen parent or child processes as anomalous.

Based on the above observations, a statistical distribution model can be designed and trained to
detect suspicious process launch events. Summarising the intuition brought by mining process launch
datasets, such a model should take into account the following three heuristics:

• How common the child process is, i.e. how often it is started by other processes

• How common the parent process is, i.e. how often it starts other processes

• How common the process launch (parent, child) ordered pair is.

A key step in designing a model is to define a score function, which we will call Process Launch
Distribution score (PLD score), combining the three heuristics above in an appropriate way. We chose
the PLD score function to be based on the pointwise mutual information (PMI) between two
processes, inspired by a generic method for detecting anomalous records in categorical datasets
[DS’07]. Given a parent process 𝑝𝑟𝑜𝑐𝐴 starting a child process 𝑝𝑟𝑜𝑐𝐵, the PMI for this process launch
event is given by:

𝑃𝑀𝐼(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝐵) = 𝑙𝑜𝑔 (
𝑝(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝐵)

𝑝(𝑝𝑟𝑜𝑐𝐴) × 𝑝(𝑝𝑟𝑜𝑐𝐵)
)

Of course, the three probabilities in this formula have to be considered empirical and can be estimated
via the corresponding frequencies in a training set. This led us to defining the PLD score function in
the following way:

17

𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝐵) =

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝐵) + 𝛼1

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 + 𝛽1

𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝐴) + 𝛼2

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 + 𝛽2
 ×

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝐵) + 𝛼3
𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 + 𝛽3

where:

• 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝐴) is the number of times 𝑝𝑟𝑜𝑐𝐴 started a child process

• 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝐵) is the number of times 𝑝𝑟𝑜𝑐𝐵 was started by another process

• 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝐵) is the number of times 𝑝𝑟𝑜𝑐𝐴 started 𝑝𝑟𝑜𝑐𝐵

• 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 is the total number of process launch events in the training set

• 𝛼1, 𝛼2, 𝛼3 and 𝛽1, 𝛽2, 𝛽3 are smoothing and other constants, often chosen to optimize the
model performance

The PLD score is always a non-negative number. The lower the PLD score is, i.e., the closer it is to zero,
the more anomalous the process launch event is from the PLD model point of view, thus, the more
suspicious it is from our security intuition point of view. We can build a PLD score distribution model
by collecting and analysing a training set of process launches observed in selected computing systems,
with each specific (parent, child) ordered pair represented in the set by as many instances as the

number of times the parent → child event was observed. Since our goal is to identify how anomalous
process launch events are with respect to the PLD model, we define several threshold values
corresponding to exponentially lower percentiles of the PLD score cumulative distribution. The first
threshold separates the 10th percentile of the PLD score cumulative distribution, that is, leaving on the
other side the least anomalous process launch events (90% of all the events with the highest
PLD_score values), which we call anomaly category 1. The second threshold separates the 1st
percentile of the PLD score cumulative distribution, and process launch events with PLD score above
this threshold but below the first threshold are said to belong to anomaly category 2, and so on. The
higher the anomaly category index, the more suspicious a process launch event is. The following table
shows the threshold definitions and the associated categories:

Range of cumulative distribution Threshold separates Anomaly category

]10% - 100%] 10th percentile 1

]1% - 10%] 1st percentile 2

]0.1% - 1%] 1st 1000-quantile 3

]0.01% - 0.1%] 1st 10,000-quantile 4

]0.001% - 0.01%] 1st 100,000-quantile 5

]0.0001% - 0.001%] 1st 1,000,000-quantile 6

]0.00001% - 0.0001%] 1st 10,000,000-quantile 7

]0% - 0.00001%] - 8

Table 1: Definition of thresholds and anomaly categories for PLD scores based on trained
distribution

The following figure depicts an example of a computed PLD score distribution together with the
thresholds inferred from it.

18

Figure 3: Density distribution of PLD score (blue curve) and thresholds inferred from it (orange
lines). Left: PLD score linear scale. Right: PLD score log scale. In both graphs, from right to left: 7

thresholds for categories 1 (10th percentile) to 7 (1st 10,000,000-quantile).

2.3 Distributed online training of PLD model

To compute PLD scores and build their distribution, we need to know observed process launch counts.
These statistics are obtained from a number of client machines which monitor their process launch
events and contribute their local knowledge to build a global PLD model in a federated manner. More
specifically, the PLD model is based on an aggregated table containing counts for all process launches
over a chosen time period. Each distinct process launch (a unique pair of parent and child processes)
that occurred on a specific client machine is represented by a row in this table. Each row has a counter
that records the number of times a specific process launch event was observed over the specific time
period. Each client i maintains such a table, shown in Table 2, which can be considered the local PLD
model 𝑃𝐿𝐷𝑖.

Parent process Child process Join call

𝑝𝑟𝑜𝑐𝑃1 𝑝𝑟𝑜𝑐𝐶1 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃1, 𝑝𝑟𝑜𝑐𝐶1)i

𝑝𝑟𝑜𝑐𝑃2 𝑝𝑟𝑜𝑐𝐶2 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃2, 𝑝𝑟𝑜𝑐𝐶2)i

….

…. ….

𝑝𝑟𝑜𝑐𝑃𝑛 𝑝𝑟𝑜𝑐𝐶𝑛 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃𝑛, 𝑝𝑟𝑜𝑐𝐶𝑛)i

Table 2: Local table for PLD model for client i

The global PLD model 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙 is built using these clients-specific 𝑃𝐿𝐷𝑖. Every client sends their local

model 𝑃𝐿𝐷𝑖
𝑡, representing the ‘most recent’ process launch behaviour in their machine, at regular

time intervals t to an aggregator, for example, a security monitoring service provider. As the new local
PLD models are received from the clients, the aggregator combines them into the global PLD model

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 to be used by every client at the next model update point (t+1). 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙 contains all the

process launch events that occurred on any of the clients contributing to building the global model.
Let’s call 𝑃𝐶𝑖 the set of unique ordered (parent process, child process) pairs contained in 𝑃𝐿𝐷𝑖. The
entries in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙 model are defined by 𝑃𝐶𝑔𝑙𝑜𝑏𝑎𝑙 as follows:

𝑃𝐶𝑔𝑙𝑜𝑏𝑎𝑙 = ⋃ 𝑃𝐶𝑖

𝑁

𝑖=1

where N is the total number of clients participating in the training process.

Then, the count of events in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙 is computed as the sum over all the clients:

PLD score PLD score

19

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝐵)𝑔𝑙𝑜𝑏𝑎𝑙 = ∑ 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝐵)𝑖

𝑁

𝑖=1

Using 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙 we can obtain all the values required to compute PLD scores:

• 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝐴) = ∑ 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝑖)𝑔𝑙𝑜𝑏𝑎𝑙𝑝𝑟𝑜𝑐𝑖 ∈ 𝑃𝐶𝑔𝑙𝑜𝑏𝑎𝑙

• 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝐵) = ∑ 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑖, 𝑝𝑟𝑜𝑐𝐵)𝑔𝑙𝑜𝑏𝑎𝑙𝑝𝑟𝑜𝑐𝑖 ∈ 𝑃𝐶𝑔𝑙𝑜𝑏𝑎𝑙

• 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑖, 𝑝𝑟𝑜𝑐𝑗)
𝑔𝑙𝑜𝑏𝑎𝑙𝑝𝑟𝑜𝑐𝑗 ∈ 𝑃𝐶𝑔𝑙𝑜𝑏𝑎𝑙𝑝𝑟𝑜𝑐𝑖 ∈ 𝑃𝐶𝑔𝑙𝑜𝑏𝑎𝑙

It is worth noting that the PLD model training setup is in-between the data aggregation and federated

learning scenarios described in Section 2.2. On the one hand, the global model 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡−1 is not

required for computing the local models 𝑃𝐿𝐷𝑖
𝑡, those are recomputed from scratch by each client at

each model update point. On the other hand, instead of sending individual process launch events to
the aggregator, the clients carry out certain data processing locally and submit only their aggregated
PLD tables. We also note that the global models at successive time points t and (t+1) are aggregated
from the local models generated by the same clients, so some indirect dependency and similarities

exist between 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 and 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1 , which is important for designing the poisoning attacks, as we

will later see.

2.4 Poisoning PLD model

We consider an attack scenario in which an adversary has found a vulnerability and can compromise
and control a common process 𝑝𝑟𝑜𝑐𝑀 in a victim machine. The adversary wants to perform malicious
actions by launching a target child process 𝑝𝑟𝑜𝑐𝑇 from 𝑝𝑟𝑜𝑐𝑀 . 𝑝𝑟𝑜𝑐𝑀 is a common parent process,
meaning that it often launches various child processes, and 𝑝𝑟𝑜𝑐𝑇 is a common child process, meaning
that it is often launched by other processes. However, 𝑝𝑟𝑜𝑐𝑀 usually does not launch 𝑝𝑟𝑜𝑐𝑇. The
𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) is low and it belongs to the low tail of the PLD score distribution.
Consequently, the anomaly category for (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) is high (e.g. 5 - 7) according to the PLD model,
and this process launch event will be considered suspicious if observed on a machine protected by the
PLD model.

The adversary wants to avoid the detection of the (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) event as a possible attack by making
it look ‘less anomalous’ with respect to the global PLD model. More specifically, the goal of the
adversary is to decrease the anomaly category for the (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) event via a poisoning attack
against the global PLD model.

We will now elaborate the generic adversary model introduced in Section 1.3. The goal of the
poisoning attack is to introduce a backdoor in the global PLD model: process launch event
(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) must be assigned to an anomaly category with a low index. This backdoor must be

integrated in the global PLD model built at the next time interval 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 . The adversary controls

the client m. To introduce the backdoor, the adversary wants to craft a poisoned local model 𝑃𝐿𝐷𝑚
𝑡 ,

which – when aggregated with the local models of the other clients 𝑃𝐿𝐷𝑖≠𝑚
𝑡 into 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1 – will lead

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 to output a lower anomaly category for (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) than 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 .

The adversary has the following capabilities to realize the poisoning attack:

• Access to one compromised client in the online distributed learning process

• Injection of one local PLD model 𝑃𝐿𝐷𝑚
𝑡 that will be used to build 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1

• Access to the global PLD model computed at the previous time point: 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 (strong

adversary described in Section 1.3.3)

20

The adversary does not know the local PLD models 𝑃𝐿𝐷𝑖≠𝑚
𝑡 that will be sent by the other clients of

the training process.

We propose and will analyse three different approaches to poisoning the PLD model to achieve the
adversary’s goal. These approaches are described and evaluated in detail in Section 3.

1. Increase target process launch count: Increase 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) by increasing
𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇)

2. Decrease parent or child process launch count: Increase 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) by
decreasing 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) or 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇)

3. Inject rare process launch events unrelated to the attack: Decrease anomaly category
thresholds by filling in the low tail of the PLD_score distribution with process launch events
unrelated to the planned attack

3. Model poisoning approaches

3.1 Experimental setup

We use a research setup where 247 clients collaborate to train a global PLD model in an online
distributed manner. Each client records their process launch events and retrains their local PLD model

𝑃𝐿𝐷𝑖
𝑡 once a day using the process launch records. The latest local PLD model 𝑃𝐿𝐷𝑖

𝑡 of each client is
sent to the aggregator for combining as presented in Section 2.3. The result of this aggregation is the

global PLD model 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 , which is sent back to each of the 247 clients participating in the training.

We took the local PLD models of each client at time (t-1) in order to build 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 . This model is

based on 22,478,835 process launch events in total, which are divided into 41,975 distinct process
launch events (unique ordered pairs of processes). The client, which reported the largest number of
events, has 5,610,402 process launches in its local PLD model, accounting for one quarter of all the
process launch events used for the global PLD model. On average, one client reported 91,007 events.
Computing the PLD score for every process launch and modelling their distribution, we obtained the
threshold values shown in Table 3, which define the anomaly categories:

Threshold PLD score threshold value Anomaly category

10th percentile 2.237847 1

1st percentile 1.216247 2

1st 1000-quantile 0.293015 3

1st 10,000-quantile 0.040073 4

1st 100,000-quantile 0.001532 5

1st 1,000,000-quantile 0.000219 6

1st 10,000,000-quantile 0.000003 7

- - 8

Table 3: PLD score thresholds in 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕 for different anomaly categories.

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 , its thresholds and PLD scores are used by the adversary to construct malicious entries to

include into 𝑃𝐿𝐷𝑚
𝑡 in order to poison 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1 . To evaluate the three attack approaches introduced

in Section 2.4 under different conditions, we randomly selected several pairs representing anomalous
process launch events with respect to 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 . For each of the selected pairs (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇), we

tried to decrease its anomaly category. Table 4 presents the ten anomalous process launches we

randomly selected and their characteristics with respect to 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 . These pairs are rarely observed

21

(168 is the greatest value, but most of the values are single-digit), they have low PLD scores and
consequently belong to the high-index anomaly categories from 5 to 7. We will use these pairs for the
attack analysis in Sections 3.2 and 3.3.

Table 4: 10 randomly selected anomalous process launches with their statistics in 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕 .

3.2 ‘Increase target process launch count’ approach

The first way to decrease the anomaly category of the (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) pair is by increasing its PLD
score. Knowing the threshold values of the global PLD model and defining a target anomaly category
(e.g., 2), we can infer the minimum PLD score required for our pair to fall in the desired category.

3.2.1 Attack description and implementation

The first proposed approach to increase 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) is by increasing

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇). Given that we know 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 , we can compute the target score 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡

to reach in order to fall in the desired anomaly category. Then for the poisoning attack to succeed, we
need to satisfy the following inequality:

 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) > 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡

Replacing 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) by its formula, we obtain the following inequality:

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) + 𝛼1

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) + 𝛼2

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
 ×

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇) + 𝛼3
𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

 > 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡

(For simplicity, we ignore the 𝛽𝑖 since they are typically negligible compared to real-life large 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
values.)

Now we can compute the minimum 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) required to satisfy this inequality. We set

𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 as the targeted anomaly category threshold to exceed and we take the values for

𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑 and 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 from 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 . 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) will be the unknown value

of the inequality that we want to solve. Since 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) is included in 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡,

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑 and 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙, we express those values as functions of our unknown. We obtain:

• 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀) = 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡

𝑡 (𝑝𝑟𝑜𝑐𝑀) + 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇)

• 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑
𝑡+1 (𝑝𝑟𝑜𝑐𝑇) = 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑

𝑡 (𝑝𝑟𝑜𝑐𝑇) + 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇)

𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝒄𝒂𝒍𝒍𝒑𝒂𝒓𝒆𝒏𝒕 𝒂𝒍𝒍𝒄𝒉𝒊𝒍𝒅 𝑷𝑳𝑫_𝒔𝒄𝒐𝒓𝒆 An. Cat.

postgres.exe conhost.exe 3 384553 2624273 0,000067 7

fshoster32.exe chrome.exe 1 114103 274529 0,000725 6

Microsoft.Nav.Client.exe cmd.exe 1 3673 3418012 0,001808 5

SearchIndexer.exe WerFault.exe 1 976465 11982 0,001940 5

Dropbox.exe sc.exe 2 8712 1624257 0,003193 5

services.exe sc.exe 168 605335 1624257 0,003841 5

chrome.exe rundll32.exe 3 274355 53447 0,004614 5

svchost.exe AcroRd32.exe 31 2441976 39003 0,007319 5

SQLAGENT.EXE conhost.exe 2 1961 2624273 0,008780 5

svchost.exe POWERPNT.EXE 4 2441976 2426 0,015215 5

22

• 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡+1 = 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

𝑡 + 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇)

Then the inequality in the unknown 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 to solve is the following:

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 + 𝛼1

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡 + 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡+1

𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑛𝑡
𝑡 (𝑝𝑟𝑜𝑐𝑀) + 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡+1 + 𝛼2

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡 + 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡+1 ×
𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑

𝑡 (𝑝𝑟𝑜𝑐𝑇) + 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 + 𝛼3

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡 + 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡+1

 > 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡

With simple transformations, this inequality can be turned into a quadratic inequality in a single
variable with 0 as the right-hand side. We can find the solutions of the corresponding quadratic

equation, which give us the range(s) of values of 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 that satisfy the target inequality. Then in the

found range(s), we need to take the minimum positive value as our crafted 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇)

value to poison the global PLD model, and the poisoning attack is carried out by adding the following
single record to the local PLD model 𝑃𝐿𝐷𝑚

𝑡 .

Parent process Child process Join call

𝑝𝑟𝑜𝑐𝑀 𝑝𝑟𝑜𝑐𝑇 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇)

Three technical remarks:

• We look for the minimum positive value of 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) in order to keep the

adversarial action as modest as possible, the reasons for which were discussed in Section
1.3.1.

• While in principle quadratic equations may not have real-valued roots or the range(s)
discussed above may not have positive values, it is easy to see that acceptable values of

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 can always be found in our specific case. In particular, if 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡+1 is very large and a

dominant part of all the other values, the left-hand side of the inequality above will be
arbitrarily close to 1, which is a fairly high value for PLD scores and nearly always guarantees
a ‘non-suspicious’ anomaly category. So, acceptable solutions do exist and the adversary just
needs to find the smallest among those.

• The formulae for 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀), 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑

𝑡+1 (𝑝𝑟𝑜𝑐𝑇) and 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡+1 above ignore the

contributions to the model update from the benign clients, which the adversary, of course,
cannot know and control. The same applies to the anomaly category threshold values. This is
where the adversary needs to rely on the note in the end of Section 2.3 on similarities between

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 and 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1 . We show a practical approach to handling this issue in the next

subsection.

3.2.2 Experimental results

We compute our solution to 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) using the 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀), 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇)

and 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 values from 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 . The anomaly category threshold that we choose for 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 to

reach is also taken from 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 , which is the most recent global PLD model available to the

adversary. However, our attack targets 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 and we do not know its parameters. While we

invoke the assumption about 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 and 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1 similarity, the two models have different

𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀), 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇), 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙, and category threshold values. In our experiments,

in order to deal with those differences between two consecutive PLD models and increase the success

chance for the attack, we heuristically increase the computed 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) values by 20%.

As a part of the analysis, we compare the performance of the poisoning attacks using the exact

23

computed values (simply ignoring the differences between consecutive models) and the values
heuristically increased by 20%.

In the experiments, we computed the required 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) values to be added to the local

model 𝑃𝐿𝐷𝑚
𝑡 in order to move our ten selected process launch pairs (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) (see Table 4) to

the anomaly categories 1, 2 or 3 in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 . The following three tables report the results of those

experiments, including the computed 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) values and their 20% increased

versions, the PLD scores and the anomaly categories we obtain in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 as the results of our

poisoning attacks. The target PLD scores used for the computations are the threshold values to exceed
in order to reach the anomaly categories 1, 2 and 3, which are equal to respectively 2.237847,
1.216247 and 0.293015 at time t, as presented in Table 2.

Table 5: 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 added to 𝑷𝑳𝑫𝒎
𝒕 for ‘increase process launch count’ poisoning attack, resulting PLD scores

and anomaly categories returned by poisoned 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕+𝟏 . ‘Base’ results for computed values of 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 and

‘+20%’ for increased values. Target anomaly category = 1 (𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕 = 2.237847 from 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕).

Table 6: 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 added to 𝑷𝑳𝑫𝒎
𝒕 for ‘increase process launch count’ poisoning attack, resulting PLD scores

and anomaly categories returned by poisoned 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕+𝟏 . ‘Base’ results for computed values of 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 and

‘+20%’ for increased values. Target anomaly category = 2 (𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕 = 1.216247 from 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕).

𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻
𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝑷𝑳𝑫_𝒔𝒄𝒐𝒓𝒆 Category

Base +20% Base +20% Base +20%

postgres.exe conhost.exe 145080 174097 2,213 2,496 1 1

fshoster32.exe chrome.exe 3244 3893 2,012 2,397 2 1

Microsoft.Nav.Client.exe cmd.exe 1895 2274 2,245 2,521 1 1

SearchIndexer.exe WerFault.exe 1291 1550 2,169 2,553 2 1

Dropbox.exe sc.exe 1680 2017 2,232 2,595 2 1

services.exe sc.exe 126728 152107 2,180 2,497 2 1

chrome.exe rundll32.exe 1507 1808 2,105 2,508 2 1

svchost.exe AcroRd32.exe 12563 15082 2,146 2,454 2 1

SQLAGENT.EXE conhost.exe 692 830 2,238 2,550 2 1

svchost.exe POWERPNT.EXE 775 930 2,184 2,497 2 1

𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻
𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝑷𝑳𝑫_𝒔𝒄𝒐𝒓𝒆 Category

Base +20% Base +20% Base +20%

postgres.exe conhost.exe 65266 78320 1,200 1,394 2 2

fshoster32.exe chrome.exe 1731 2077 1,093 1,306 3 2

Microsoft.Nav.Client.exe cmd.exe 833 1000 1,221 1,413 2 2

SearchIndexer.exe WerFault.exe 668 802 1,179 1,400 2 2

Dropbox.exe sc.exe 838 1006 1,213 1,431 2 2

services.exe sc.exe 60345 72448 1,181 1,384 2 2

chrome.exe rundll32.exe 805 967 1,143 1,368 3 2

svchost.exe AcroRd32.exe 5917 7107 1,164 1,361 3 2

SQLAGENT.EXE conhost.exe 323 388 1,217 1,420 2 2

svchost.exe POWERPNT.EXE 365 439 1,187 1,388 2 2

24

Table 7: 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 added to 𝑷𝑳𝑫𝒎
𝒕 for ‘increase process launch count’ poisoning attack, resulting PLD scores

and anomaly categories returned by poisoned 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕+𝟏 . ‘Base’ results for computed values of 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 and

‘+20%’ for increased values. Target anomaly category = 3 (𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕 = 0.293015 from 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕).

We can see that the attack succeeds in around one half of the cases when using the exact 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

values computed using 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 , and the success rate is higher when targeting the anomaly

categories 2 and 3. The attack always succeeds when taking the increased (20%) values, as we reach
the targeted anomaly category in all the 30 cases we tested. So, using the proposed technique, the
adversary achieves their goal despite the lack of knowledge and control over the training contributions
of the benign clients.

Comparing the obtained PLD scores to the ones we targeted, we observe that the errors – explained
by the differences between the two consecutive global PLD models at times t and (t+1) – do not exceed
10%. While the errors show that the parameters of the global PLD model do change over time, it
appears that two consecutive global PLD models are still similar enough for the adversary’s purposes
(which technically come down to predicting accurately the 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 value to inject for poisoning the

global model). The 10% bound on the observed errors explains why the attacks using the exact 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

values fail sometimes and the attacks using the increased values always succeed.

We also can see that the 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values to inject vary significantly across the studied cases

(combination of the ten selected process launch events and the three target anomaly categories).
Predictably, reaching a ‘less suspicious’ anomaly category (e.g., 1 vs. 2) always required higher 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

values. It is more interesting to note that for different process launch events, the required 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

values to inject can differ by two orders of magnitude. When either the parent process or the child
process is not very frequently used and 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡 or 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑 is in the range of tens of thousands,

the adversary needs to inject only a few hundreds or a few thousands of process launch events in
order to succeed. The attack can be carried out stealthily in this case since a single client reports 80,000
process launches on average and injecting a few thousands more events may not be easily noticed.
However, when both parent and child processes are popular, that is, both 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡 and 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑 are

high numbers (in the range of millions), the values of 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 start exceeding 100,000 (when targeting

the anomaly category 1). Such massive injections to local models are, of course, easier to detect.

Takeaways: To summarize the experimental results, we see that the ‘increase process launch count’
poisoning attack is very accurate and effective for reaching the adversarial goals. The success rate is
100% when we conservatively increase the computed 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values by 20%. Furthermore, in many

𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻
𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝑷𝑳𝑫_𝒔𝒄𝒐𝒓𝒆 Category

Base +20% Base +20% Base +20%

postgres.exe conhost.exe 13683 16420 0,289 0,344 3 3

fshoster32.exe chrome.exe 410 492 0,263 0,316 4 3

Microsoft.Nav.Client.exe cmd.exe 171 205 0,294 0,350 3 3

SearchIndexer.exe WerFault.exe 154 185 0,285 0,341 3 3

Dropbox.exe sc.exe 187 225 0,293 0,350 3 3

services.exe sc.exe 13022 15660 0,284 0,339 3 3

chrome.exe rundll32.exe 189 228 0,275 0,331 4 3

svchost.exe AcroRd32.exe 1251 1508 0,280 0,334 4 3

SQLAGENT.EXE conhost.exe 68 82 0,295 0,352 3 3

svchost.exe POWERPNT.EXE 76 92 0,287 0,343 3 3

25

cases the attack requires the adversary to inject relatively small numbers of process launch events,
which makes it stealthy.

3.3 ‘Decrease parent or child process launch count’ approach

3.3.1 Attack description and implementation

The second proposed approach to increasing 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) is based on decreasing the
values of 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) or 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇). This attack is challenging because it is not possible

for the adversary to prevent the benign clients from reporting process launches involving 𝑝𝑟𝑜𝑐𝑀 or
𝑝𝑟𝑜𝑐𝑇. One solution, however, is to insert illegal inputs in the controlled local PLD model 𝑃𝐿𝐷𝑚

𝑡 . We
can decrease 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) and 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇) in the global PLD model by inserting to

𝑃𝐿𝐷𝑚
𝑡 negative counts for process launch events involving 𝑝𝑟𝑜𝑐𝑀 as a parent and 𝑝𝑟𝑜𝑐𝑇 as a child.

In the analysis, we start in the same way as in Section 3.2. Given that we know 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 and its

anomaly category threshold values, we can infer the 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 value sufficient for the PLD score of

(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) to exceed in order to fall in the desired anomaly category. The starting inequality is
exactly the same as in Section 3.2.1:

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) + 𝛼1

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) + 𝛼2

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
 ×

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇) + 𝛼3
𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

 > 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡

In this attack, we keep 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) as a fixed value taken from 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 and we consider

either 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀) or 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑

𝑡+1 (𝑝𝑟𝑜𝑐𝑇) as the unknown to solve the inequality for. In both

cases, we need to express 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡+1 as a function of the unknown (with a caveat similar to the one

discussed in the very end of Section 3.2.1):

• 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡+1 = 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

𝑡 + 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀), when 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡

𝑡+1 (𝑝𝑟𝑜𝑐𝑀) is the unknown

• 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡+1 = 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

𝑡 + 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑
𝑡+1 (𝑝𝑟𝑜𝑐𝑇), when 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑

𝑡+1 (𝑝𝑟𝑜𝑐𝑇) is the unknown

Considering the case when 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀) is the unknown, the above inequality can be

transformed into the following inequality in 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀):

𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀) <

<
𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

𝑡 × (𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡 + 𝛼1) − 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 × (𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡

𝑡 (𝑝𝑟𝑜𝑐𝑀) + 𝛼2) × (𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑
𝑡 (𝑝𝑟𝑜𝑐𝑇) + 𝛼3)

𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 × (𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑
𝑡 (𝑝𝑟𝑜𝑐𝑇) + 𝛼3) − (𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡 + 𝛼1)

So, assuming similarity of 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 and 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1 if only the benign clients contribute to the model

update, we can find the maximum acceptable value of 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀), that is, the maximum

number of events when 𝑝𝑟𝑜𝑐𝑀 starts other processes as reported by all the clients in the global PLD

model update for the poisoning attack to succeed. In the same way, we can find 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑
𝑡+1 (𝑝𝑟𝑜𝑐𝑇).

Since the PLD score of (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 is too low, we expect the found values of

𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀) and 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑

𝑡+1 (𝑝𝑟𝑜𝑐𝑇) to be lower than the values of 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡 (𝑝𝑟𝑜𝑐𝑀) and

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑
𝑡 (𝑝𝑟𝑜𝑐𝑇) respectively. Thus, the poisoning attack needs to decrease one of these two values,

which can be achieved by creating a fake process 𝑝𝑟𝑜𝑐𝐹 used only in fake process launch events
(𝑝𝑟𝑜𝑐𝐹 , 𝑝𝑟𝑜𝑐𝑇) and (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝐹). Then the adversary needs to satisfy one of the following two
conditions where both target values will be negative:

26

• 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝐹) = 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡

𝑡+1 (𝑝𝑟𝑜𝑐𝑀) − 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡 (𝑝𝑟𝑜𝑐𝑀)

• 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝐹 , 𝑝𝑟𝑜𝑐𝑇) = 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑

𝑡+1 (𝑝𝑟𝑜𝑐𝑇) − 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑
𝑡 (𝑝𝑟𝑜𝑐𝑇)

So, the poisoning attack can be carried out by adding one of the following records to the local PLD
model 𝑃𝐿𝐷𝑚

𝑡 . Since the adversary cannot hope for stealthiness in this attack, they are essentially free
in choosing one of these two options.

Parent process Child process Join call

𝑝𝑟𝑜𝑐𝐹 𝑝𝑟𝑐𝑇 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝐹 , 𝑝𝑟𝑜𝑐𝑇)

Parent process Child process Join call

𝑝𝑟𝑜𝑐𝑀 𝑝𝑟𝑜𝑐𝐹 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝐹)

3.3.2 Experimental results

We run the experiments in the way described in Section 3.2.2. To compute the target values of

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝐹) and 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡+1 (𝑝𝑟𝑜𝑐𝐹 , 𝑝𝑟𝑜𝑐𝑇), we use 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀), 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇) and

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 from 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 . While in the previous subsection we considered injection of either fake

parent or fake child records, in the experiments we inject them both, because that increases the attack
effectiveness and because that is what real-life adversaries are likely to do. So, we inject both fake

parent and child records with the computed 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 values to the local PLD model 𝑃𝐿𝐷𝑚

𝑡 and evaluate

the success of the attack, which is defined as moving our ten selected (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) pairs (see Table

4) to the anomaly categories 1 or 3 in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 . Unlike the previous attack, we do not apply any

heuristic adjustments to 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝐹) and 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡+1 (𝑝𝑟𝑜𝑐𝐹 , 𝑝𝑟𝑜𝑐𝑇) to account for the lack

of our knowledge about 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 . The results show that such adjustments would not be helpful.

The following two tables report the results of the experiments. They show:

– the computed 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values, which tell how many process launch events we need to inject

in the local PLD model for both (𝒑𝒓𝒐𝒄𝑴, 𝑝𝑟𝑜𝑐𝐹) and (𝑝𝑟𝑜𝑐𝐹 , 𝒑𝒓𝒐𝒄𝑻);
– the resulting 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) and 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇);

– the PLD scores and the anomaly categories we obtain in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 as the results of our

poisoning attacks.

The target PLD scores used for the computations are the threshold values to exceed in order to reach
the anomaly categories 1 and 3, which are equal to respectively 2.237847 and 0.293015 at time t, as
presented in Table 2.

27

Table 8: Negative 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 added to 𝑷𝑳𝑫𝒎
𝒕 for ‘decrease parent or child process launch count’ poisoning

attack, resulting PLD_score and anomaly category returned by poisoned 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕+𝟏 . Target anomaly

category = 1 (𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕 = 2.237847 from 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕).

Table 9: Negative 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 added to 𝑷𝑳𝑫𝒎
𝒕 for ‘decrease parent or child process launch count’ poisoning

attack, resulting PLD_score and anomaly category returned by poisoned 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕+𝟏 . Target anomaly

category = 3 (𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕 = 0.293015 from 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕).

We can see that the attack succeeds in 70% of the cases when targeting the anomaly category 1 and
in 80% of the cases for the anomaly category 3. More importantly, we note that the returned
categories are exactly the same, regardless of what our target category is, so the attack accuracy is
not high.

The main challenge of this attack is that in order to succeed it must decrease 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) and

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇) of frequently used processes dramatically, by several orders of magnitude, e.g., from
1,000,000 to 1,000 or from 10,000 to 100. If the differences between 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) (respectively

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇)) in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 and 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1 are large, it is difficult to compute the records to inject

accurately, and then the attack either fails by not increasing the PLD score sufficiently or over-
performs by increasing it too much. Even when we succeed in targeting the anomaly category 1, the
PLD score we obtain is often much larger than the one we targeted (2.237847). For the
(Microsoft.Nav.Client.exe, cmd.exe) pair, we decrease 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) so much that it becomes

negative, which results in the negative PLD score and the highest anomaly category (9) assigned.
Besides, the need for the malicious client to use large negative values in the injected records can make
the sum of all the process launch events, which the client reports from its local model, negative.

𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻
𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍

𝒕+𝟏 𝑷𝑳𝑫
𝒔𝒄𝒐𝒓𝒆

Cat.
𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻 𝒄𝒂𝒍𝒍𝒑𝒂𝒓𝒆𝒏𝒕 𝒄𝒂𝒍𝒍𝒄𝒉𝒊𝒍𝒅

postgres.exe conhost.exe -384542 -2624195 5831 22816 0,739 3

fshoster32.exe chrome.exe -114067 -274441 6080 18491 0,200 4

Microsoft.Nav.Client.exe cmd.exe -3671 -3415250 -23 33909 -24,922 9

SearchIndexer.exe WerFault.exe -975619 -11972 36597 56 10,676 1

Dropbox.exe sc.exe -8700 -1621940 42 14643 68,698 1

services.exe sc.exe -604296 -1621469 21155 15114 11,246 1

chrome.exe rundll32.exe -273790 -53337 18831 422 8,457 1

svchost.exe AcroRd32.exe -2433987 -38876 96944 883 8,018 1

SQLAGENT.EXE conhost.exe -1954 -2613973 8 33038 152,20 1

svchost.exe POWERPNT.EXE -2425361 -2410 105570 7 109,60 1

𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻
𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍

𝒕+𝟏 𝑷𝑳𝑫
𝒔𝒄𝒐𝒓𝒆

Cat.
𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻 𝒄𝒂𝒍𝒍𝒑𝒂𝒓𝒆𝒏𝒕 𝒄𝒂𝒍𝒍𝒄𝒉𝒊𝒍𝒅

postgres.exe conhost.exe -384466 -2623673 5907 23338 0,714 3

fshoster32.exe chrome.exe -113821 -273850 6326 19082 0,186 4

Microsoft.Nav.Client.exe cmd.exe -3651 -3396898 -3 52261 -124,45 9

SearchIndexer.exe WerFault.exe -969997 -11903 42219 125 4,147 1

Dropbox.exe sc.exe -8618 -1606544 124 30039 11,352 1

services.exe sc.exe -597397 -1602945 28054 33638 3,815 1

chrome.exe rundll32.exe -270034 -52606 22587 1153 2,581 1

svchost.exe AcroRd32.exe -2380817 -38029 150114 1730 2,650 1

SQLAGENT.EXE conhost.exe -1903 -2545365 59 101646 6,738 1

svchost.exe POWERPNT.EXE -2314453 -2301 216478 116 3,247 1

28

Takeaways: To summarize the experimental results, we see that the ‘decrease parent or child process
launch count’ poisoning attack can be effective in some cases, but can also fail even if we inject both
fake parent and fake child records at the same time. It succeeds in reaching the anomaly category 1
in many cases, but it is quite inaccurate for anomaly categories other than 1. Finally, the attack
requires to inject large negative numbers of process launch events (in the range of millions sometimes)
to reach its goal, which makes it easy to detect and prevent via input validation.

3.4 ‘Inject rare process launch events unrelated to the attack’
approach

3.4.1 Attack description and implementation

Compared with the previous two poisoning attacks in Sections 3.2 and 3.3, the last attack we evaluate
takes a different approach. Instead of modifying the PLD score of (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) pairs, its goal is to
decrease the threshold values for several anomaly categories. By moving an appropriate number of
the threshold values below the value of 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇), we can ‘lift’ the (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇)
pair to a less suspicious anomaly category without modifying the pair’s PLD score. In order to decrease
anomaly category threshold values, we need to drift and densify the PLD scores distribution towards
low values.

For this attack, we look for processes 𝑝𝑟𝑜𝑐𝑃 ≠ 𝑝𝑟𝑜𝑐𝑀 and 𝑝𝑟𝑜𝑐𝐶 ≠ 𝑝𝑟𝑜𝑐𝑇 with high
𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑃) and 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝐶) values respectively. Such processes combined in a process

launch event will have a low PLD score, if 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃, 𝑝𝑟𝑜𝑐𝐶) is low. Then if the PLD score of the

event is lower than 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇), the event is a candidate for injection into 𝑃𝐿𝐷𝑚
𝑡 since

it densifies the PLD score distribution in values lower than 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) and will
contribute to shifting the anomaly category threshold values below that score. So, we need to find as
many such (𝑝𝑟𝑜𝑐𝑃 , 𝑝𝑟𝑜𝑐𝐶) process pairs as we can and compute the maximum 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃 , 𝑝𝑟𝑜𝑐𝐶)

value for each pair to maximize its ‘threshold shifting’ contribution while keeping its PLD score in
𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 below 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇)3. The maximum acceptable 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 value is computed

from the inequality defined in Section 3.2.1, we just need to reverse the inequality sign:

 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑃 , 𝑝𝑟𝑜𝑐𝐶) < 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇)

The computation is carried out essentially in the same way as in 3.2.1, by reducing the task to solving
a quadratic equation.

All the found candidate process launch pairs, together with their computed maximum
𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃 , 𝑝𝑟𝑜𝑐𝐶) values, are added to the local PLD model 𝑃𝐿𝐷𝑚

𝑡 . It is worth noting that none

of the injected process launch pairs contain 𝑝𝑟𝑜𝑐𝑀 as a parent process or 𝑝𝑟𝑜𝑐𝑇 as a child process.
This was done in order to avoid impacting 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇), increasing the chances that as
many as possible anomaly category threshold values will be shifted below that score. This also hides
the final goal of the poisoning attack because none of the process launch events we are injecting into
the local (and then the global) model involve the malicious process launch operation that the
adversary eventually wants to carry out and avoid detection.

Parent process Child process Join call

𝑝𝑟𝑜𝑐𝑃1 𝑝𝑟𝑜𝑐𝐶1 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃1, 𝑝𝑟𝑜𝑐𝐶1)

𝑝𝑟𝑜𝑐𝑃2 𝑝𝑟𝑜𝑐𝐶2 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃2, 𝑝𝑟𝑜𝑐𝐶2)

3 For each process pair (𝑝𝑟𝑜𝑐𝑃 , 𝑝𝑟𝑜𝑐𝐶), our attack injects 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 process launch events (𝑝𝑟𝑜𝑐𝑃 → 𝑝𝑟𝑜𝑐𝐶), as

recorded in Table 10.

29

…. …. ….

𝑝𝑟𝑜𝑐𝑃𝑛 𝑝𝑟𝑜𝑐𝐶𝑛 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃𝑛, 𝑝𝑟𝑜𝑐𝐶𝑛)

Table 10: The local table of 𝑷𝑳𝑫𝒎
𝒕 .

In this model poisoning scenario, we do not aim to reach a specific anomaly category for our target
process launch event since it may not be possible to fill the PLD score distribution with sufficiently
many events having sufficiently low PLD score values. We rather want to evaluate what the lowest
anomaly category that we can reach using this poisoning attack is, given that our target pair
(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) belongs initially to a specific anomaly category. We also want to investigate how many
process launch events overall we need to inject to succeed with the attack. For the experiments, we
selected two process pairs, highly relevant in the cybersecurity context, which belong to the categories
6 and 5. The cases of these two target pairs will be analysed separately, and the pairs are as follows:

Table 11: Process pairs selected for experimenting with ‘Inject rare process launch events unrelated to the
attack’ approach and their parameters in 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍

𝒕 .

3.4.2 Experimental results

We selected 100 processes with the highest 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡 values and 100 processes with the highest

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑 values in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 . We built all the possible 10,000 pairwise combinations and computed

their PLD scores from 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 . As explained above, we kept only the pairs with PLD score lower than

the PLD score of the target process launch pair and discarded the others. Then we computed the
maximum acceptable 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values for each of the remaining process pairs in order to fill in the PLD

score distribution of 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 with as many low PLD score values as possible. We note that those

maximum 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values are computed from the parameters of 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 but with the goal of

poisoning 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 . Since there is some difference between the two consecutive global models (see,

e.g. the end of Section 3.2.1), we chose to be conservative and reduced the value of 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 for each

process launch pair that we injected by 10% to help ensure that the PLD scores of the injected pairs

remain lower than the PLD score of the target process launch pair in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 .

First, we took (fshoster32.exe, chrome.exe) as a target process launch pair. In 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 , it belongs to

the anomaly category 6. We found 616 candidate process launch pairs for injection out of the 10,000
pairs tested. The sum of the 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values for all these 616 pairs was equal to 9,047 process launch

events that we could use for increasing the density in the low value end of the PLD score distribution.
The average of the 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values for all those pairs was 15. By injecting the process launch events to

the local PLD model 𝑃𝐿𝐷𝑚
𝑡 , we succeeded in reducing the anomaly category of (fshoster32.exe,

chrome.exe) from 6 to 4. The following table shows the statistics of the target process launch pair in
the initial and poisoned PLD models:

Table 12: Comparison of 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕 and 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍

𝒕+𝟏 models for (fshoster32.exe, chrome.exe)

For the (OfficeClickToRun.exe, rundll32.exe) pair from the anomaly category 5, we found 3,258
candidate process launch pairs for injection (the same 10,000 pairs were tested). The sum of the

𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝒄𝒂𝒍𝒍𝒑𝒂𝒓𝒆𝒏𝒕 𝒄𝒂𝒍𝒍𝒄𝒉𝒊𝒍𝒅 𝑷𝑳𝑫_𝒔𝒄𝒐𝒓𝒆 An. Cat.

fshoster32.exe chrome.exe 1 114103 274529 0,00072 6

OfficeClickToRun.exe rundll32.exe 1 18619 53447 0.02281 5

𝑷𝑳𝑫 𝒎𝒐𝒅𝒆𝒍 Poisoning events 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝒄𝒂𝒍𝒍𝒑𝒂𝒓𝒆𝒏𝒕 𝒄𝒂𝒍𝒍𝒄𝒉𝒊𝒍𝒅 𝑷𝑳𝑫_𝒔𝒄𝒐𝒓𝒆 An. Cat.

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 - 1 114103 274529 0,00072 6

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 (poisoned)

+9047 (616
unique pairs)

1 120147 292932 0.00065 4

30

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values for all these pairs was equal to 345,466 process launch events. The average of the

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values for all the found pairs was 106. By injecting the process launch events to the local PLD

model 𝑃𝐿𝐷𝑚
𝑡 , we succeeded in reducing the anomaly category of (OfficeClickToRun.exe, rundll32.exe)

from 5 to 2. The following table shows the statistics of the target process launch pair in the initial and
poisoned PLD models:

Table 13: Comparison of 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕 and 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍

𝒕+𝟏 models for (OfficeClickToRun.exe, rundll32.exe)

As we can see, going from the anomaly category 6 to the anomaly category 4 was achieved by injecting
some hundreds of process launch records, with a very modest average value of 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛. Since the

clients report around 80,000 process launch events on average in one round of training, injecting 9,047
process launch events does not look as a serious anomaly. On the other hand, the effort to go from
the anomaly category 5 to the anomaly category 2 required the injection of over 300,000 process
launch events, which is significantly larger than the average of 80,000. We have to remember,
however, that some benign clients report sometimes up to 5,000,000 process launches in one local
model. Using such a client to perform the poisoning attack would certainly make the injection less
noticeable.

The anomaly category thresholds selection for the PLD model is based on quantiles exponentially
decreasing in size, as presented in Table 1 above. This means that for a target process pair to move to
the anomaly category 1, we need roughly to inject 10% of the total number of process launch events
in the global PLD model, injecting around 1% is sufficient for moving to the category 2, and so on. In

our experimental setup, with over 22,000,000 process launch events in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 , we must inject

around 2,200,000 new events with low PLD scores to reach the anomaly category 1 and around
220,000 to reach the category 2.

Figure 4: PLD score distribution for initial and poisoned PLD models in the experiment with
(fshoster32.exe, chrome.exe). Target category is 4. 9047 process launch events injected in the

poisoned model. Distributions are highly similar.

𝑷𝑳𝑫 𝒎𝒐𝒅𝒆𝒍 Poisoning events 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝒄𝒂𝒍𝒍𝒑𝒂𝒓𝒆𝒏𝒕 𝒄𝒂𝒍𝒍𝒄𝒉𝒊𝒍𝒅 𝑷𝑳𝑫_𝒔𝒄𝒐𝒓𝒆 An. Cat.

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 - 1 18619 53447 0.02281 5

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 (poisoned)

+345466 (3258
unique)

1 18740 53759 0.02305 2

PLD score

31

Figure 5: PLD score distribution for initial and poisoned PLD models in the experiment with
(OfficeClickToRun.exe, rundll32.exe). Target category is 2. 345,466 process launch events injected

in the poisoned model. Distributions are highly similar.

It is important to analyse the impact of our attacks on the PLD score distribution, comparing the

distributions of the poisoned model 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 and the initial model 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 . Figures 4 and 5 depict

these distributions for the two studied attacks. Looking at the place where we poison the model (PLD
score values close to 0), we do not see any difference between the initial and poisoned models for the
first attack, and the discrepancy is very modest for the second attack. The differences are much more
noticeable in the range of PLD scores between 8 and 10, but those are certainly not due to the attacks
and explained by concept drift processes captured by the retraining. This shows that our poisoning
attacks are hard to detect by superficially comparing the PLD score distributions and the concept drift
effects are more significant.

Taking into account that the numbers of injected events are quite small compared with the total
training set size (over 22 million), this is not very surprising. The effects of the poisoning attacks can
be better observed in Figures 6 and 7, where we zoom in the range of low PLD score values. We see
that the first poisoning attack actually led to the increased density of the PLD score distribution by a
factor of 2 in the interval close to 0 (Figure 6), and a greater change can be observed for the second
attack, where the density increased by a factor of 30. While the former effect can still be explained by
concept drift, the latter increase should raise an alarm. So, monitoring closely how the model changes
in sensitive places certainly makes good sense.

Figure 6: PLD score distribution for initial and poisoned PLD models in the interval close to 0 in the
experiment with (fshoster32.exe, chrome.exe).

PLD score

PLD score PLD score

32

Figure 7: PLD score distribution for initial and poisoned PLD models in the interval close to 0 in the
experiment with (OfficeClickToRun.exe, rundll32.exe).

Finally, we review the poisoning attacks effect in terms of the anomaly category threshold values in

Figures 8 and 9. In both cases, we see that while the initial model 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 has well distributed

anomaly category thresholds around 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡, the poisoned model 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 has several ‘stacked’

thresholds all below 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡. This essentially illustrates that the attacks successfully reached their

goal and were near-optimal in poisoning the distribution-based model. All the thresholds moved
below 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 are very close to that value and to each other, which shows that the attacks are

effective at maximizing 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 of the injected process launch pairs while keeping their PLD score

below 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡. The anomaly category thresholds are close to each other because in the low value

tail of the distribution there are many (injected) events close to 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡.

Figure 8: Anomaly category thresholds (orange lines) in initial and poisoned PLD models in the
experiment with (fshoster32.exe, chrome.exe). Black line = 𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕. Left: initial model has 2

thresholds (categories 7 and 6) below 𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕. Right: poisoned model has 4 thresholds

(categories 7, 6, 5 and 4) below 𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕.

PLD score PLD score

PLD score PLD score

33

Figure 9: Anomaly category thresholds (orange lines) in initial and poisoned PLD models in the
experiment with (OfficeClickToRun.exe, rundll32.exe). Black line = 𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕. Left: initial model

has 3 thresholds (categories 7, 6 and 5) below 𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕. Right: poisoned model has 6 thresholds

(categories 7 to 2) below 𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕.

Takeaways: To summarize the experimental results, we see that the ‘Inject rare process launch events
unrelated to the attack’ poisoning approach is effective and accurate at reaching the adversarial goal
of decreasing the anomaly category of a target process launch. At the same time, such an attack may
not always be able to reach any anomaly category of the attacker’s choice. Required volumes of
injected process launch events are quite modest for this approach. For instance, tens of thousands of
injected events should normally be sufficient if the target anomaly category is not 1 or 2. Such attacks
are stealthy since they inject many process launch pairs with relatively low 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values (in the range

of 10 - 100) and do not inject any pairs involving the target pair processes planned by the adversary
for the actual cyberattack.

4. Defense recommendations

Learning from the poisoning approaches that we introduced and analysed, we present in this section
a set of recommendations to counter model poisoning attacks that target AI-based systems using
online distributed training and to mitigate their negative impact.

Checking input format and validity: Attacks following the ‘decrease parent or child process launch
count’ approach can be easily defeated by rejecting, prior to aggregation, any local records or models
including negative 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values. When designing an online distributed training process, it is

important to define formats and validity conditions for local models and data, listing all their
parameters, properties, fields, etc. and defining acceptable ranges for those and other more complex
conditions as appropriate. Each local model or data record must be checked against the defined
conditions and rejected if any of the checks fail. One example of this procedure is sometimes referred
to as ‘bounded norm distance’ validation, where any inputs to aggregation are verified to not exceed
a pre-defined norm.

Normalisation of local models and data before aggregation: The aggregation of local models into the
global model in PLD sums together unbounded values of 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛. While this is a typical aggregation

approach in distributed and federated learning, it allows compromised or dishonest clients to have
greater impact on the global model. A client can submit much higher values than the other clients in
order to influence the global model in their interest [BVH+’18, BCM+’19]. One way to address the
unequal contributions issue is to normalise local models (or data points) prior to aggregation in order
to control their impact. For instance, in the PLD training process, we could require clients to submit

PLD score PLD score

34

local frequencies of events instead of their counters. Then the sum of the 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values in each local

model would be equal to 1, and all the clients would contribute to the global model equally. When
such ‘full normalisation’ is not desirable, one should look for other, softer, ways to bound impact of
individual contributions.

Outlier detection for poisoned local models and data: One typical approach to detection of poisoning
attacks is based on identifying local models or data points that deviate too much from the majority of
local models or data points submitted for aggregation. For example, a clustering algorithm can be
applied to local models to identify outliers, that is, models which are far from all the obtained clusters
[STS’16]. This defence approach is effective when local data points, which client contributions are
based on, are independent and identically distributed (i.i.d.), causing local models to be similar.
However, if the i.i.d. assumption does not apply to local data points across the clients, outlier detection
methods will not work well, producing numerous mistakes due to the high variance of the client
contributions.

For the PLD model training, we analysed the PLD score distribution of different local models. The PLD
score distribution for the local models from four different clients is depicted in Figure 10. We clearly
see that the local models vary widely, and the i.i.d. assumption is likely not valid in the case of the PLD
distributed training. So, outlier detection-based methods are unlikely to be effective in this case.

Figure 10: PLD score distribution for local models of 4 different clients.

Rejecting local models with a large distance to the global model: Another approach to detecting and
removing poisoned local models is based on computing their distances to the global model [KSL’18,
PMG+’18, SKL’17]. If the distance from a local model to the global model is too high, the local model
is rejected. One challenge of this approach is with defining an appropriate distance function. A
potentially greater limitation is that such techniques assume that all benign local models are close to
the global model. Thus, similarly to the case of outlier detection-based methods, the i.i.d. assumption
seems to be required here. If we compare the PLD score distribution of the four local models in Figure
10 and the PLD score distribution of the global model in Figure 3, we can see that all the local models
are significantly different from the global model.

Detecting abnormal evolution of local models or data points over time: Instead of comparing local
models or data points from different clients among each other or with the global model, usually
ineffective if the i.i.d. assumption does not hold, we can monitor the evolution of individual local

PLD score

35

models or data over time. The underlying assumption for such approaches is that the local models or
data points produced by the same benign client over time are likely to be similar. So, a poisoned local
model would likely differ significantly from the local models submitted by that client in the past. We
can leverage the online training aspect of the PLD method for monitoring evolution of the local PLD
models.

To validate this approach, we randomly selected a client. In its ‘last good’ (or normal) local model, the
client reported 556 process launch pairs and 93,423 process launch events. We injected the poisoned
process launch events required for carrying out the first and the third poisoning approaches into the
client’s local model. We then compared the PLD score distributions of the ‘last good’ model and the
poisoned version in order to see how easy it is to detect the poisoning operations. We tested the
following four attack scenarios:

• ‘increase target process launch count’ for the (postgres.exe, conhost.exe) pair

• ‘increase target process launch count’ for the (fshoster32.exe, chrome.exe) pair

• ‘inject rare process launch events’ for the (fshoster32.exe, chrome.exe) pair

• ‘inject rare process launch events’ for the (OfficeClickToRun.exe, rundll32.exe) pair

Figure 11: PLD score distributions for normal and poisoned local models in ‘increase target process
launch count’ attack for (postgres.exe, conhost.exe). Left: target anomaly category = 3 (13,683

process launch events injected). Right: target anomaly category = 1 (145,920 process launch events
injected).

Figure 12: PLD score distributions for normal and poisoned local models in ‘increase target process
launch count’ attack for (fshoster32.exe, chrome.exe). Left: target anomaly category = 3 (410

process launch events injected). Right: target anomaly category = 1 (3,244 process launch events
injected).

PLD score PLD score

PLD score PLD score

36

Comparing the PLD score distributions of the normal and poisoned local models for the ‘increase
target process launch count’ attack in Figures 11 and 12, we clearly see differences in low PLD score
areas. The poisoned models have higher densities in those areas, especially when targeting the
anomaly category 1, when the attack requires to inject high numbers of process launch events. This
indicates that poisoned local PLD models can often be detected by comparing those with earlier local
models from the same clients. However, we also see in the left part of Figure 12 that some poisoning
attacks that require to inject only small numbers of process launch events (hundreds in the considered
case) are difficult to detect with model evolution monitoring techniques.

Similar observations can be made in the ‘Inject rare process launch events unrelated to the attack’
case, presented in Figure 13. These poisoning attacks also resulted in significantly increased
distribution densities in the area of low PLD scores.

Figure 13: PLD score distributions for normal and poisoned local models in ‘Inject rare process
launch events’ attack. Left: experiment with (OfficeClickToRun.exe, rundll32.exe), 9,047 events

injected. Right: experiment with (fshoster32.exe, chrome.exe), 345,466 events injected.

As shown in these experiments, leveraging the retraining aspect of online distributed learning is a
promising avenue for detecting poisoned local models (or data). Assuming that a client was a benign
participant of the training in the past (e.g., prior to getting compromised by an adversary), we can
likely detect its poisoned local model by comparing it with earlier local models.

Strong client authentication (countering Sybil attacks): In this study, our focus was on the case of a
single compromised client operating in a single communication (model update) round. Poisoning
attacks can be mitigated by normalising client contributions or can be detected by comparing
poisoned contributions with benign ones (from other clients or from the past). The adversary can
make poisoning attacks stealthier and / or increase their effectiveness by distributing them among
multiple compromised clients. The adversary can actually create new fully controlled fake clients to
increase their poisoning capability by contributing more local models or data to the training process.
This is referred to as Sybil attacks. To avoid such attacks, it is important to implement strong client
authentication, preventing the adversary from creating fake clients. While some defences have been
developed to detect Sybil attacks in federated learning [FYB’18], they are based on strong assumptions
of the similarity of local models contributed by every Sybil client and can be circumvented. Enforcing
strong client authentication better mitigates this threat and increases the attack cost for the adversary
(in particular, if obtaining authentication credentials requires payments). Unfortunately, there exist
scenarios when client authentication is undesirable or impossible, for instance, due to anonymity
requirements.

PLD score PLD score

37

5. Conclusion

In this report, we presented the SHERPA project Task 3.5 work on vulnerability of ML models to
poisoning attacks. Since attack – and corresponding defense – approaches are usually highly case-
specific, we decided to focus on analysing a simple but realistic anomaly detection system similar to
ones that could be used in the computer security domain and based on a model called Process Launch
Distribution (PLD). This made it possible to comprehensively review potential model poisoning tactics
of the adversary, consider ways to implement and optimize specific attacks following those tactics,
and analyse the extents and impact of the attacks. The choice of the anomaly detection system based
on the PLD model as the study target was mainly based on:

i. its practical relevance to the cybersecurity domain;
ii. its relative simplicity allowing for comprehensive analysis;

iii. its training method, which is widely used by digital service providers; and
iv. the fact that the system is a good representative of a practically popular class of anomaly

detection systems.

Points (iii) and (iv) are important arguments in favour of the relevance and generalizability of the
results that we obtained.

We designed and demonstrated in experiments the effectiveness of three model poisoning
approaches targeting the PLD-based system. The three implemented attacks were able to effectively
poison the studied global model for detecting anomalous process launch events. Each attack required
adversarial control over only a single client participating in the online distributed training process (out
of several hundreds of clients in the experimental setup) and modifying its local model in a minimal
manner in most cases. Since the three analysed poisoning approaches are applicable to similar
anomaly detection systems in multiple domains, our results should be considered a strong warning
for organisations developing and operating such systems.

Learning from the vulnerabilities identified in our experiments, we provided and illustrated a set of
recommendations for detecting and mitigating poisoning attacks, which we are planning to extend
and translate to other use cases in the future project work. These recommendations can be
summarised as follows:

• Defining and checking the format and validity of local contributions to model training

• Normalisation of local contributions prior to aggregating those to the global model

• Detecting and discarding outliers in local contributions

• Discarding local models having large distances to the global model

• Detecting abnormal evolution of local contributions over time

• Using strong client authentication to mitigate the risks of distributed poisoning attacks

We note that some of these methods for countering poisoning attacks rely on certain assumptions, in
particular, on the distribution of training data among clients contributing to model training and on
evolution of training data over time. It is important to carefully check limitations and assumptions of
defence techniques and their applicability to specific use cases.

38

References

[ATK’15] Akoglu, L., Tong, H., & Koutra, D. (2015). Graph based anomaly detection and description: a
survey. Data mining and knowledge discovery, 29(3), 626-688.

[BVH+’18] Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., & Shmatikov, V. (2018). How to backdoor
federated learning. arXiv preprint arXiv:1807.00459.

[BNL’12] Biggio, B., Nelson, B., & Laskov, P. (2012). Poisoning attacks against support vector machines.
In Proceedings of the 29th International Conference on International Conference on Machine
Learning (pp. 1467-1474).

[BR’18] Biggio, B., & Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition, 84, 317-331.

[BCM+’19] Bhagoji, A. N., Chakraborty, S., Mittal, P., & Calo, S. (2019). Analyzing Federated Learning
through an Adversarial Lens. In International Conference on Machine Learning (pp. 634-643).

[BEG+’19] Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., & Van
Overveldt, T. (2019). Towards federated learning at scale: System design. arXiv preprint
arXiv:1902.01046.

[CBK’09] Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing
surveys (CSUR), 41(3), 1-58.

[CLL+’17] Chen, X., Liu, C., Li, B., Lu, K., & Song, D. (2017). Targeted backdoor attacks on deep learning
systems using data poisoning. arXiv preprint arXiv:1712.05526.

[CSL+’08] Cretu, G. F., Stavrou, A., Locasto, M. E., Stolfo, S. J., & Keromytis, A. D. (2008). Casting out
demons: Sanitizing training data for anomaly sensors. In 2008 IEEE Symposium on Security and Privacy
(S&P 2008) (pp. 81-95).

[DS’07] Das, K., & Schneider, J. (2007, August). Detecting anomalous records in categorical datasets.
In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data
mining (pp. 220-229).

[FYB’18] Fung, C., Yoon, C. J., & Beschastnikh, I. (2018). Mitigating sybils in federated learning
poisoning. arXiv preprint arXiv:1808.04866.

[GKN’17] Geyer, R. C., Klein, T., & Nabi, M. (2017). Differentially private federated learning: A client
level perspective. arXiv preprint arXiv:1712.07557.

[HJN+’11] Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., & Tygar, J. D. (2011, October).
Adversarial machine learning. In Proceedings of the 4th ACM workshop on Security and artificial
intelligence (pp. 43-58).

[KSL’18] Koh, P. W., Steinhardt, J., & Liang, P. (2018). Stronger data poisoning attacks break data
sanitization defenses. arXiv preprint arXiv:1811.00741.

[KMY+’16] Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., & Bacon, D. (2016).
Federated learning: Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492.

39

[MMR+’17] McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April).
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Artificial Intelligence
and Statistics (pp. 1273-1282).

[MRR’12] Muniyandi, A. P., Rajeswari, R., & Rajaram, R. (2012). Network anomaly detection by
cascading k-Means clustering and C4.5 decision tree algorithm. Procedia Engineering, 30, 174-182.

[PMS+’18] Papernot, N., McDaniel, P., Sinha, A., & Wellman, M. P. (2018, April). SoK: Security and
privacy in machine learning. In 2018 IEEE European Symposium on Security and Privacy (EuroS&P) (pp.
399-414). IEEE.

[PMG+’18] Paudice, A., Muñoz-González, L., Gyorgy, A., & Lupu, E. C. (2018). Detection of adversarial
training examples in poisoning attacks through anomaly detection. arXiv preprint arXiv:1802.03041.

[STS’16] Shen, S., Tople, S., & Saxena, P. (2016, December). AUROR: Defending against poisoning
attacks in collaborative deep learning systems. In Proceedings of the 32nd Annual Conference on
Computer Security Applications (pp. 508-519).

[SP’10] Sommer, R., & Paxson, V. (2010, May). Outside the closed world: On using machine learning
for network intrusion detection. In 2010 IEEE symposium on security and privacy (pp. 305-316). IEEE.

[SKL’17] Steinhardt, J., Koh, P. W. W., & Liang, P. S. (2017). Certified defenses for data poisoning
attacks. In Advances in neural information processing systems (pp. 3517-3529).

[WYS+’19] Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., & Zhao, B. Y. (2019, May). Neural
cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019 IEEE Symposium on
Security and Privacy (SP) (pp. 707-723). IEEE.

[WC’18] Wang, Y., & Chaudhuri, K. (2018). Data poisoning attacks against online learning. arXiv
preprint arXiv:1808.08994.

