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Acronyms and terms 

Term Explanation 

AI Artificial intelligence 

Backdoor attack A model poisoning attack where the goal is to decrease the performance of a 
target ML model for a set of selected inputs 

Denial-of-service 
attack 

A model poisoning attack where the goal is to decrease the performance of a 
target ML model as a whole 

Distributed training An approach where training data come in multiple parts owned and 
contributed by multiple parties 

i.i.d. independent and identically distributed (applied to random variables) 

ML Machine Learning 

ML model An artifact created by a training process of an ML algorithm 

Normalisation Adjusting values, often measured on different scales, to bring them into 
alignment 

Online training An approach where models are periodically and incrementally updated when 
more training data become available 

PLD Process Launch Distribution, the model this report focuses on 

Poisoning attack Model poisoning, or data poisoning, is a class of training-time attacks on ML-
based systems 

SIS  Smart Information Systems: The combination of artificial intelligence and big 
data analytics 
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Executive Summary  

The main purpose of this report is to systematically investigate attack strategies and – based on the 
analysis – introduce technical defense options and interventions for the responsible use of Artificial 
Intelligence (AI). The presented study focuses on model poisoning attacks against services powered 
by Machine Learning (ML) models trained in the online fashion on distributed data from uncontrolled 
environments (see figure). 

 

Machine learning model training using distributed data owned by multiple clients 

To discover and analyse model poisoning attacks (primarily backdoor attacks, but with some denial-
of-service effects as well) against online distributed training and to assess their potential impact, we 
select a popular class of models and consider carefully defined and realistic adversaries targeting such 
models.  

In our analysis and experiments, we show how an adversary can achieve their goals despite lack of 
knowledge and control over the training contributions of the benign clients. We also show that the 
poisoning attacks we simulated in the experiments are hard to detect due to their relatively modest 
scale, which makes it difficult to distinguish them from ordinary variations and concept drift effects. 

Learning from the identified vulnerabilities, we provide and illustrate a set of recommendations for 
detecting and mitigating poisoning attacks against models of the considered class. In particular, the 
following can help stop attacks, make them costlier for the adversary, or significantly reduce their 
impact: 

1. input validation,  

2. normalisation of client contributions (local models or data points),  

3. monitoring of contributions of each client over time to detect anomalies, and  

4. strong client authentication.  

At the same time, we observe that such defence approaches as detecting outliers among contributions 
of multiple clients in a single round of online training and rejecting local models with a large distance 
to the global model are often problematic due to their low precision resulting in high false alert rates.  

Since the analysed poisoning approaches are applicable to many models successfully used in digital 
services in multiple domains, our results should be considered a strong warning for organisations 
developing and operating such services. 
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Introduction  

Attacks on AI systems is a serious concern. Reliability of AI systems in the presence of determined 
adversaries and resilience to their attacks are of a high importance, since a system controlled, even 
partially, by an adversary can hardly be considered trustworthy, and one can expect to see violation 
of multiple values and human rights of the users of such a system. At the same time, with the growing 
popularity of AI systems and importance of those for our society, they are naturally becoming more 
attractive targets for attackers. 

As in many other domains, Machine Learning (ML) techniques, which power a large share of modern 
AI systems, were originally designed for benign and controlled environments. That assumption, 
unfortunately, does not hold in numerous practical applications of ML models today. There are many 
ways for attacking ML-based systems, both at training and inference time, and their dependence on 
data, often coming from uncontrolled environments, significantly broadens the attack surface. In 
particular, model poisoning, or data poisoning, is an important class of training-time attacks on ML-
based systems wherein an attacker injects mislabelled or mis-distributed data into the training process 
to degrade the performance of ML models. Among multiple types of attacks in the context of ML, data 
poisoning stands out by deeply exploiting properties specific to ML approaches, it is a threat 
essentially brought by ML. 

While injecting data points of their choice is not always possible or affordable for attackers, there are 
many practically successful systems, the setup of which provides adversaries with rich poisoning 
opportunities. A good example of such are systems with underlying ML models trained online and 
using distributed training data, which means essentially that (i) their training data come in multiple 
parts from devices and environments owned by multiple parties, and (ii) their models are periodically 
and incrementally updated when more training data become available. In this group, one finds, for 
instance, search engines, systems utilizing sentiment analysis of user opinions and other 
recommender systems, intrusion and malware detection services, and social media chatbots. 

A number of poisoning attacks against such systems have been proposed and studied, and some 
interesting theoretical results have been reported. Nevertheless, there are almost no flashing media 
stories about major incidents related to data poisoning1, and it seems that the level of concern among 
organisations running services based on ML models susceptible to poisoning attacks, policy-makers, 
and general public (including users of those services) is quite low. This is perhaps unsurprising, as the 
experience with cybersecurity showed that unless actual devastating security incidents take place or, 
at least, fully practical and devastating attacks are demonstrated in certain venues, the industry – and 
the society in general – are slow and unwilling to invest in fixing vulnerabilities and building better 
defences. 

 
1 One rare example is the Tay AI chatbot case (https://www.theverge.com/2016/3/24/11297050/tay-microsoft-
chatbot-racist), and it dates back to March 2016. 

This report investigates the threats that data 
poisoning attacks pose to Machine Learning (ML) 
and statistical models, considered an important 
subclass of AI, and their use in various applications. 

https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
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As one of the top objectives of the SHERPA project is to increase awareness about problems and risks 
associated with the development and use of AI-based systems, the main goal set for the first stage of 
the project’s technical interventions work in Task 3.5 was, therefore, to emphasize the importance of 
reliable and attack-resilient AI via designing and analysing practical high-impact poisoning attacks 
against a popular class of ML models trained in the online distributed fashion. Based on the analysis 
of the attacks, we also propose defence approaches, which will be further studied, generalised and 
included in the SHERPA’s ‘intelligent mix’ of recommendations in the second stage of Task 3.5. 

To construct practical attacks and assess their impact, one has to select a sufficiently specific attack 
target, preferably representing well a wider class of systems used in real-life applications. Taking into 
account the considerations presented above and informed by the SHERPA project work in WP1 
(primarily, the work of Task 1.3 on Security Issues, Dangers and Implications of Smart Information 
Systems and the case study interviews and analysis in Task 1.1) and discussions with the SHERPA 
Stakeholder Board members, we chose to focus on resilience to poisoning attacks of one ML-based 
anomaly detection system that can be used in the cybersecurity domain. 

Anomaly detection is widely used in cybersecurity since it is an effective method to detect unknown 
and sophisticated attacks [ATK’15, CBK’09, DS’07, MRR’12]. In general, the method is based on 
modelling the normal, or benign, behavior of computing devices, networks and systems in the absence 
of attacks and then using learned models to detect attacks as deviations or anomalous behavior. By 
design, anomaly detection-based security mechanisms do not need any prior knowledge about 
attacks, they only require examples of normal behavior [CBK’09, SP’10]. The approach is especially 
useful for countering determined and skillful attackers investing into developing novel attack tactics 
and techniques. 

Online training using distributed data is a common setup for training anomaly detection systems for 
two reasons. First, it enables leveraging large amounts of diverse data (reported usually by a large 
number of parties) in order to model comprehensively all possible types of normal behavior. Second, 
updating models on a regular basis enables adapting to changes and capturing evolving normal 
behavior. 

The system selected as the study target detects anomalous process launch events in a computer by 
modelling the distribution of typical process launches and comparing new events with that 
distribution. More specifically, the underlying system’s model belongs to the class of models named 
statistical distribution with thresholds (explained in Section 2.1). While simple, models of this type can 
be applied to many use cases and are easy to understand. Consequently, they are widely used in 
cybersecurity and many other domains. 

In security applications, it is prudent to assume that adversaries know the design and parameters of 
defense mechanisms and will try to compromise the effectiveness of those, in particular, reducing 
their attack detection power. This assumption naturally applies to ML-based anomaly detection 
systems: cyber criminals want their attacks to remain undetected and look for ways to bypass anomaly 
detection mechanisms [BR’18, HJN+’11, PMS+’18], which can be achieved by influencing their 
underlying models, in particular, via model / data poisoning attacks.  

As introduced above, data poisoning [BNL’12, CSL+’08, HJN+’11] is an attack in which an adversary 
modifies a fraction of training data with the goal of decreasing the performance of ML models trained 
using the data. In the case of anomaly detection-based security systems, this decrease in performance 
corresponds to a decrease in attack detection capabilities. Poisoning attacks typically fall in one of the 
following categories:  

• Denial-of-service attack, where the goal is to decrease the performance of a target ML model 
as a whole. The predictive accuracy of the ML model will decrease for any input (or a majority 
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of inputs) submitted to it. This means the poisoned anomaly detection system will not be able 
to distinguish normal / benign inputs from anomalous / malicious ones. 

• Backdoor / Trojan attack, where the goal is to decrease the performance of a target ML model 
for a set of selected inputs. The predictive accuracy of the ML model will decrease only for 
inputs selected by the attacker, but must be preserved for any other inputs. This means the 
poisoned anomaly detection system will not be able to detect a particular attack while 
remaining effective at distinguishing other anomalous / malicious inputs from normal / benign 
ones. 

Goals and scope of poisoning attacks and techniques used to carry them out can vary widely. Backdoor 
attacks are typically stealthier, that is, more difficult to detect, than denial-of-service attacks because 
the former do not manifest in an overall decrease in model performance. They are also more relevant 
in the security domain where one of the first goals of an adversary is usually to avoid the defensive 
anomaly detection system alerting on their specific cyberattack. Consequently, in the first stage of 
Task 3.5, we chose to study backdoor poisoning attacks2. 

We introduce three poisoning attack techniques against the chosen anomaly detection model and 
evaluate their effectiveness and other key properties with respect to several natural adversarial goals. 
While targeted at the anomalous process launch detection system, our three attack techniques 
generalize to essentially any statistical distribution model with thresholds. We also present a number 
of recommendations for detecting and mitigating impact of the considered attacks. 

At the project level, our goal for the future work is to communicate the importance of reliable and 
attack-resilient AI and to draw attention to data / model poisoning attacks and ways of countering 
those. SHERPA, actively working on AI guidelines and options for standards and regulations in WP3 
and closely communicating with the members of its impressively strong project Stakeholder Board (in 
the framework of WP2), is perfectly positioned for bringing our results and recommendations to the 
stakeholders. We believe that understanding of dangers and extents of attacks and optimal mitigation 
strategies and measures is crucial not only for AI developers and providers of AI-powered digital 
services but also for users of those services, in order to maximize the benefits that AI systems bring 
and to minimize associated risks. 

The remaining part of this report is organized as follows. Section 1 provides background information 
on online machine learning, distributed training and poisoning attacks. Section 2 presents the ML 
anomaly detection model which we study and experiment with in the report. It also presents the data 
poisoning goals and an overview of the three attacks we design and analyze. In Section 3, we describe 
in detail the three poisoning attacks and assess them as applied against the anomalous process launch 
detection model. Section 4 provides recommendations for countering poisoning attacks against 
statistical distribution models. The study and the lessons learned are summarized in the Conclusion 
(Section 5). 

 
2 We note that one of the studied attacks brings some denial-of-service effects as well. 

In this report, we present the study of backdoor 
poisoning attacks targeting an anomaly detection 
system practically relevant for the cybersecurity 
domain. 
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1. Background 

1.1 Online machine learning 

Online machine learning or online training is a machine learning approach which recognizes that 
training data become available in portions in a sequential order, continuously or periodically. As new 
data samples become available, online training is used to incrementally update a machine learning 
model with new data. This is in contrast to batch training where a training set is collected until a certain 
point in time and, once the collection is completed, a model is trained using this static dataset and will 
not change afterwards (but may, of course, be eventually replaced by a new model). Batch training is 
a one-time operation and the resulting model is used without further updates.  

Online machine learning is typically used in two main scenarios: 

• When a training dataset is statically defined (i.e. it does not evolve) but too large to be used 
at once for training a model. The data is then processed in small portions to incrementally 
update the model in order to make it computationally feasible to use the entire dataset. Such 
training techniques as Stochastic Gradient Descent (SGD) represent online machine learning 
approaches addressing the challenges of this scenario. 

• When a training dataset evolves over time and a model needs to dynamically adapt to new 
patterns and other properties of the data. Then the model is updated on a regular basis, 
sometimes very frequently, as new data samples are available. Model updating methods can 
use either only the most recent data samples (not used earlier) or add to those some of the 
earlier collected samples (e.g. in the sliding window fashion). 

ML-based anomaly detection methods typically use online training for the reason discussed in the 
second scenario. The behavior of a system to model usually evolves over time due to various internal 
and external factors, which is referred to in the ML domain as concept drift. Anomaly detection models 
must capture concept drift changes in order to remain effective. In the cybersecurity context, in 
particular, the inability to learn new behavior leads to large numbers of false alarms due to detecting 
novel innocent events as anomalous and potentially malicious, which is often a major problem.   

1.2 Distributed and federated learning 

Distributed learning refers to a machine learning process which is distributed among multiple data 
owners, or clients, and coordinated by a central entity called aggregator. Clients and aggregator 
collaborate to train a common global ML model G, based on all the available training data. There are 
multiple ways to carry out distributed training, and we present here two approaches which are the 
most relevant for our study.  

The first approach is called data aggregation and it considers clients only as sources of data with no 
processing capabilities. In other words, training data is distributed among multiple clients, and model 
training operations are fully carried out by an aggregator. Local datasets 𝐷𝑖 are submitted by each 
client and aggregated into a global dataset 𝐷 by the aggregator. The aggregation process in this 
scenario comes down simply to merging all the client-specific datasets 𝐷𝑖 into the global dataset as 
follows: 

𝐷 =  ⋃ 𝐷𝑖

𝑖 ∈ 𝐶
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where 𝐶 is the set of all the clients participating in the distributed training process. The aggregator 
then uses the global dataset 𝐷 to train a global model 𝐺 using model training techniques selected by 
data analysts of the aggregator entity, as depicted in Figure 1. 

 

Figure 1: ML model training using distributed data owned by multiple clients. 

The second approach is called federated learning, and it delegates parts of the training process to 
clients [BEG+’19, KMY+’16, MMR+’17]. Instead of providing their local datasets for merging into a 
global centralized dataset, each client uses their 𝐷𝑖 to train a local model 𝐿𝑖. These local models are 
sent to the aggregator instead of the local training datasets. The aggregator then uses a specific 
procedure in order to aggregate all the local models 𝐿𝑖 into the global model 𝐺. While federated 
learning also leverages all the local data 𝐷𝑖 owned by the clients in order to train 𝐺, in contrast to plain 
data aggregation, the clients do not have to expose their local data. Thus, federated learning has a 
number of advantages over data aggregation, including: (i) communication efficiency [KMY+’16, 
MMR+’17] because local models typically have significantly smaller sizes than the datasets they are 
trained on; and (ii) privacy-preserving [GKN’17] because potentially sensitive data owned by the 
clients do not need to be shared with any other parties. Federated learning also distributes 
computational efforts, offloading a part of the aggregator computations to the clients, which can be 
desirable when the client devices have unused processing power (which is often the case for modern 
computers and mobile devices). 

More generally, the federated training process can be iterative and composed of several 
communication rounds performed at successive times t. If all the clients take part in each round, this 
is essentially about training in the online fashion. Alternatively, the aggregator can select (usually 
randomly) only a fraction of the clients for each round, and then multiple rounds are required for 
ensuring sufficiently high representation of the clients in the training. This process is depicted in Figure 
2 and it consists of repeating the following four steps:  

1. The aggregator sends the global model at time t, 𝐺𝑡, to every (selected) client.  

2. Each client updates 𝐺𝑡 using their local dataset 𝐷𝑖 to obtain a local model at time t, 𝐿𝑖
𝑡.  

3. Each client sends their local model 𝐿𝑖
𝑡 to the aggregator. 

4. The aggregator aggregates all 𝐿𝑖
𝑡 into the new global model at time (t+1), 𝐺𝑡+1. 
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Figure 2: Federated learning of a global ML model using local models from multiple clients. 

Several aggregation algorithms exist to combine local models 𝐿𝑖
𝑡 into a global model 𝐺𝑡. The most 

common is called Federated-Averaging [KMY+’16, MMR+’17]. It is defined by the following formula as 
the weighted sum of local models from each (selected) client: 

𝐺𝑡+1 =  ∑
𝑛𝑖

𝑁
 × 𝐿𝑖

𝑡

𝑖 ∈ 𝐶

 

where 𝑛𝑖 is the size of 𝐷𝑖, 𝑁 is the size of 𝐷, and 𝐿𝑖
𝑡 is the local model of client i at time t. Each local 

model is weighted with a coefficient accounting for the number of data samples contained in the local 
dataset that was used to train it. The coefficients are scaled by dividing the local dataset sizes by the 
total number of data samples owned by all the clients (or all the selected clients). This approach gives 
local models trained on large amount of data a larger impact on what the global model will be. 

1.3 Model poisoning of online distributed training 

To discover and reason about model poisoning attacks targeting online distributed training and to 
analyse their potential impact, we define here a model of adversary, most importantly, their goals, 
properties and capabilities. We assume that the aggregator is a trusted party in the distributing 
training process and an adversary is one or several malicious clients participating in the training of the 

global model 𝐺. The adversary contributes local datasets 𝐷𝑖 or local models 𝐿𝑖
𝑡 to the online distributed 

learning process. Contributions from the adversary can be repeated over time due to the online nature 

of the training setting, where new data are periodically used to update the global model: 𝐺𝑡 → 𝐺𝑡+1. 
This means the adversary has the capability to submit several local datasets or local models over time. 
We now proceed to define the goal, attack surface and capabilities of the adversary in model poisoning 
attack on online distributed training. 
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1.3.1 Adversary’s goal 

The goal of the adversary is to perform a data poisoning attack, affecting the global model 𝐺. This 
attack can be either a denial-of-service attack or a backdoor attack, which are described and 
formalized as follows: 

• Denial-of-service attack sets a goal to decrease the performance of the ML model as a whole 
[BNL’12, CSL+’08, HJN+’11]. The predictive accuracy of the ML model will decrease for any 
input (or a majority of inputs) submitted to it. More specifically, this means that the accuracy 
of the poisoned model 𝐺𝑝 will be significantly lower than that of the non-poisoned model 𝐺 

on a test set randomly sampled from the input space. A denial of service poisoning attack is 
successful if the following condition is met (with 𝐴𝑐𝑐(𝐺) denoting the predictive accuracy of 
𝐺 on a random test set): 

 𝐴𝑐𝑐(𝐺𝑝) ≪ 𝐴𝑐𝑐(𝐺), which clearly means 𝐺𝑝(𝑥) ≠ 𝐺(𝑥) for a large share of 𝑥. 

• Backdoor / Trojan attack sets a goal to decrease the performance of the ML model for a set 
of selected inputs [CLL+’17]. The predictive accuracy of the ML model will decrease only for 
the set of inputs selected by the attacker, which is called a trigger set, and we denote it by 𝑇. 
For the inputs from 𝑇, the poisoned model 𝐺𝑝 must output predictions defined by a backdoor 

function 𝐵. 𝐵 is defined by the adversary, and we naturally have 𝐵(𝑥) ≠ 𝐺(𝑥). The accuracy 
of 𝐺𝑝 must be preserved for any inputs that are not a part of 𝑇. A backdoor poisoning attack 

characterized by a trigger set 𝑇 and a backdoor function 𝐵 is successful if the following 
condition is met: 

 𝐺𝑝(𝑥) = {
 𝐺(𝑥)                   ∀ 𝑥 ∉ 𝑇 
𝐵(𝑥) (≠ 𝐺(𝑥)) ∀ 𝑥 ∈ 𝑇

 

A secondary, but still important, goal for any poisoning attack is to achieve its primary goal with 
‘minimal malicious action’. Minimality can be interpreted as either minimal modifications to original 

local datasets 𝐷𝑖 or models 𝐿𝑖
𝑡 or a minimum number of local datasets 𝐷𝑖 or models 𝐿𝑖

𝑡 to poison. The 
first reason for targeting minimality of the malicious action is that there may be restrictions on the 
amount of data and the number of local models a single client can contribute to the distributed 
training process (e.g., one local model per communication round and per client in federated learning). 
Limiting the ‘budget’ for a poisoning attack increases its chance of success if such restrictions are in 
place. The second reason is achieving stealthiness of an attack. If a poisoning attack requires significant 
modifications to local datasets and models, those will likely be very different from datasets and 
models of other (benign) clients of the distributed training. Then adversarial datasets and models can 
be identified as anomalous by the aggregator and the poisoning attack can be detected and blocked. 

Backdoor poisoning attacks are stealthier and more difficult to detect than denial of service attacks 
[WYS+’19]. Denial of service attacks can often be easily noticed since the poisoned global model has 
an overall decrease in performance / accuracy. In contrast, backdoor attacks do not decrease the 
model performance for most of the inputs to the global model. The aggregator, or the model users, 
can only notice that the model has a backdoor by submitting inputs from the trigger set to the model. 
So, in order to detect a backdoor attack, one needs: 

a) knowledge and availability of samples from the trigger set;  
b) correct labels for those trigger set samples; and  
c) knowledge that the non-poisoned model would not make prediction errors on those trigger 

set samples (i.e., the errors are introduced by the attacker).  



 

 
 

14 

We also note that even if we discover that a global model is poisoned, identifying the client(s) 
responsible for the attack can be challenging. 

1.3.2 Attack surface 

We consider the adversary to be (controlling) a client in an online distributed training process. 
Malicious clients have the same access to the training process as any other client. This means that 
their only interaction with the training process is the submission of at most one local dataset 𝐷𝑖 or 

model 𝐿𝑖
𝑡 per communication round and per controlled malicious client. If the adversary controls 

several clients, they can distribute the poisoning attack among several local models and datasets 
contributed by those clients. Since 𝐺 is learned in the online fashion, the adversary can also distribute 
the poisoning attack over several submissions of local models and datasets. 

1.3.3 Adversarial capabilities 

Poisoned data injection. We consider fully online adversaries that can only inject poisoned local 
datasets and models to the regular stream of local datasets and models. The adversary cannot modify 
datasets and models submitted by other benign clients participating in the training process. The 
properties, contents and numbers of injected poisoned datasets and models are freely defined by the 
adversary, within the restrictions of the target online learning method (i.e. one local dataset and 
model per communication round and per client the adversary controls).  

Number of compromised clients. The adversary can control multiple compromised clients. Each 
controlled client increases the adversarial capability to inject poisoned datasets and models. An 
increased number of compromised clients can increase either the effectiveness of the attack (by 
combining the poisoning capabilities of the compromised clients) or the stealthiness of the attack (by 
distributing poisoning data across the compromised clients). We assume that the adversary cannot 
compromise a dominant share of all the clients participating in the online training, so there is always 
a large share of benign clients that contribute benign data and models. In particular, if the total 
number of clients is N, we assume that the adversary cannot control more than N/2 clients. Of course, 
if an aggregation algorithm prioritizes local models trained on larger datasets (e.g. as discussed in the 
end of Section 1.2), the clients controlled by the adversary can exploit that to ‘inflate’ their impact. 
However, if their number is small, their contributions will look anomalously high, which helps detect 
their activities. So, the upper bound on the number of compromised clients is meaningful even in such 
scenarios. 

Model knowledge. We assume that the adversary knows the type of the machine learning model 
being trained and its hyper-parameters. This assumption is obvious in federated learning cases where 
each client trains their own local model and receives evolving global models from the aggregator. To 
make the adversary stronger, we assume the same knowledge in the data aggregation scenario, even 
though global models are not necessarily shared with clients in this case. 

Then we consider the following two cases of additional model knowledge: 

• Weak adversary does not know the parameters of the global model 𝐺𝑡 at time t. The global 
models are hosted on the central server and confidential from the client perspective. This is 
typically the case in the data aggregation mode of distributed training. A weak adversary may 
have partial access to 𝐺𝑡 nevertheless, through a model query interface providing model 
predictions for submitted inputs. 

• Strong adversary knows the parameters of the global model 𝐺𝑡 at time t. The global model is 
shared with each client after each communication round and aggregation of the local models. 
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This is typically the case in federated learning, where local models 𝐿𝑡
𝑖  are trained based on the 

global model 𝐺𝑡.  

2. The model to attack  

In this section, we present the ML model we chose for the study. We take the problem of anomaly 
detection as our study case, more precisely, detection of anomalous process launches in a computing 
system. The model we studied, selected as a realistic attack target, is simple yet effective and similar 
to models that could be used in real-life defence systems. It models the distribution of process launch 
events in client machines and detects events anomalous for this distribution. This type of model is 
referred to as statistical distribution with thresholds and it is presented in Section 2.1. Models of this 
type can be applied to many practical use cases, they are easy to understand and, consequently, they 
have numerous real-life applications in various domains. 

In Section 2.2, we present a concrete instance of a statistical distribution model with thresholds that 
can be used for the purpose of detecting anomalous process launches in computers. This model is 
called Process Launch Distribution (PLD), and it is trained in a federated and online manner as 
described in Section 2.3. 

Finally, we propose a general attack scenario against the PLD model in Section 2.4 and introduce three 
poisoning attack techniques which will be analysed in detail in Section 3. 

2.1 Statistical distribution model with thresholds 

We chose to study one of the simplest but also very popular and effective methods for anomaly 
detection. This method detects anomalies as deviations from an observed distribution or, more 
precisely, as rare events with respect to an observed distribution. It requires: 

1. To define a score function for quantifying events 
2. To model the distribution of the score values computed for the events in the training set and  
3. To use the modelled distribution to define threshold(s) that separate common / normal events 

from rare / anomalous events 

When applied to computer security, an underlying assumption of this method is that benign events in 
a training set are much more frequent than events connected with attacks. The defined score function 
is computed on the training set events, and the distribution of the obtained score values becomes the 
model. Using this distribution, one or several threshold values can be assigned, which separate normal 
events, where the distribution is dense, from anomalous events, where the distribution is sparse. At 
the inference time, when new events come, we compute their score values and compare them with 
the assigned threshold values. Based on this comparison, we can see how anomalous a specific event 
is, depending on how dense the model distribution is in the interval (between two consecutive 
threshold values) which the event belongs to. 

2.2 Process Launch Distribution (PLD) model 

A highly useful application of the statistical distribution modelling approach in computer security is a 
method for detecting anomalous process launch events in a computing system. Operations in 
computing systems are carried out by so-called processes, instantiating at run-time software programs 
and containing their code, resources, activities, etc. Processes start each other in various ways, for 
example, a web browser typically starts a PDF reader to open a PDF file found on the Internet. An 
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action of a parent process starting, or launching, a child process is called a process launch event. Such 
events can often be used for reliable identification of attempts of cybercriminals to compromise 
computing systems. On the one hand, many process launch events are observed frequently in nearly 
all computers and can be considered a part of their normal benign activities. Here are a few examples 

of popular process launch events represented as (parent process → child process) ordered pairs: 

• java.exe → cmd.exe 

• cmd.exe → conhost.exe 

• cmd.exe → find.exe 

• SearchIndexer.exe → SearchFilterHost.exe 
 
On the other hand, some process launches are very rare, anomalous and typically a sign of malicious 
activities. Here are a few examples of suspicious process launch events: 

• winword.exe → cmd.exe 

• SQLAGENT.EXE → conhost.exe 

• chrome.exe → rundll32.exe  
 
Analysis shows that the most reliable signs of attacks are events where common processes are used in 
anomalous ways. In the context of process launch, this corresponds to a common parent process 
starting a common child process, but their ordered pair is rare. For instance, winword.exe often starts 
other processes and cmd.exe is often started by other processes, but it is very unusual to see 
winword.exe starting cmd.exe. Such an event is a strong signal of a spear-phishing attack, and a similar 
logic can be applied to a number of other process launches related to malicious activities. At the same 
time, if the parent process or the child process in a given pair is rare itself, using such events for raising 
security alerts is risky. There are many benign processes which are seen very rarely and, of course, any 
event including one or two such processes is rare as well but not necessarily connected to any 
cyberattacks. A good example of such processes is customized software installers. Since false alerts 
are highly undesirable in security monitoring, a good model should not consider events with rarely 
seen parent or child processes as anomalous. 

Based on the above observations, a statistical distribution model can be designed and trained to 
detect suspicious process launch events. Summarising the intuition brought by mining process launch 
datasets, such a model should take into account the following three heuristics: 

• How common the child process is, i.e. how often it is started by other processes 

• How common the parent process is, i.e. how often it starts other processes 

• How common the process launch (parent, child) ordered pair is. 

A key step in designing a model is to define a score function, which we will call Process Launch 
Distribution score (PLD score), combining the three heuristics above in an appropriate way. We chose 
the PLD score function to be based on the pointwise mutual information (PMI) between two 
processes, inspired by a generic method for detecting anomalous records in categorical datasets 
[DS’07]. Given a parent process 𝑝𝑟𝑜𝑐𝐴 starting a child process 𝑝𝑟𝑜𝑐𝐵, the PMI for this process launch 
event is given by: 

𝑃𝑀𝐼(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝐵) = 𝑙𝑜𝑔 (
𝑝(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝐵)

𝑝(𝑝𝑟𝑜𝑐𝐴)  ×  𝑝(𝑝𝑟𝑜𝑐𝐵) 
) 

Of course, the three probabilities in this formula have to be considered empirical and can be estimated 
via the corresponding frequencies in a training set. This led us to defining the PLD score function in 
the following way: 
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𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝐵) =

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝐵) + 𝛼1

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 +  𝛽1

𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝐴) +  𝛼2

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 +  𝛽2
 ×  

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝐵) +  𝛼3
𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 + 𝛽3

 

where: 

• 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝐴)  is the number of times 𝑝𝑟𝑜𝑐𝐴 started a child process 

• 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝐵)  is the number of times 𝑝𝑟𝑜𝑐𝐵 was started by another process 

• 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝐵)  is the number of times 𝑝𝑟𝑜𝑐𝐴 started 𝑝𝑟𝑜𝑐𝐵  

• 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙   is the total number of process launch events in the training set 

• 𝛼1, 𝛼2, 𝛼3 and 𝛽1, 𝛽2, 𝛽3 are smoothing and other constants, often chosen to optimize the 
model performance 

The PLD score is always a non-negative number. The lower the PLD score is, i.e., the closer it is to zero, 
the more anomalous the process launch event is from the PLD model point of view, thus, the more 
suspicious it is from our security intuition point of view. We can build a PLD score distribution model 
by collecting and analysing a training set of process launches observed in selected computing systems, 
with each specific (parent, child) ordered pair represented in the set by as many instances as the 

number of times the parent → child event was observed. Since our goal is to identify how anomalous 
process launch events are with respect to the PLD model, we define several threshold values 
corresponding to exponentially lower percentiles of the PLD score cumulative distribution. The first 
threshold separates the 10th percentile of the PLD score cumulative distribution, that is, leaving on the 
other side the least anomalous process launch events (90% of all the events with the highest 
PLD_score values), which we call anomaly category 1. The second threshold separates the 1st 
percentile of the PLD score cumulative distribution, and process launch events with PLD score above 
this threshold but below the first threshold are said to belong to anomaly category 2, and so on. The 
higher the anomaly category index, the more suspicious a process launch event is. The following table 
shows the threshold definitions and the associated categories: 

Range of cumulative distribution Threshold separates Anomaly category 

]10% - 100%] 10th percentile 1 

]1% - 10%] 1st percentile 2 

]0.1% - 1%] 1st 1000-quantile 3 

]0.01% - 0.1%] 1st 10,000-quantile 4 

]0.001% - 0.01%] 1st 100,000-quantile 5 

]0.0001% - 0.001%] 1st 1,000,000-quantile 6 

]0.00001% - 0.0001%] 1st 10,000,000-quantile 7 

]0% - 0.00001%] - 8 

Table 1: Definition of thresholds and anomaly categories for PLD scores based on trained 
distribution  

The following figure depicts an example of a computed PLD score distribution together with the 
thresholds inferred from it. 
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Figure 3: Density distribution of PLD score (blue curve) and thresholds inferred from it (orange 
lines). Left: PLD score linear scale. Right: PLD score log scale. In both graphs, from right to left: 7 

thresholds for categories 1 (10th percentile) to 7 (1st 10,000,000-quantile). 

2.3 Distributed online training of PLD model 

To compute PLD scores and build their distribution, we need to know observed process launch counts. 
These statistics are obtained from a number of client machines which monitor their process launch 
events and contribute their local knowledge to build a global PLD model in a federated manner. More 
specifically, the PLD model is based on an aggregated table containing counts for all process launches 
over a chosen time period. Each distinct process launch (a unique pair of parent and child processes) 
that occurred on a specific client machine is represented by a row in this table. Each row has a counter 
that records the number of times a specific process launch event was observed over the specific time 
period. Each client i maintains such a table, shown in Table 2, which can be considered the local PLD 
model 𝑃𝐿𝐷𝑖. 

Parent process Child process Join call 

𝑝𝑟𝑜𝑐𝑃1 𝑝𝑟𝑜𝑐𝐶1 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃1, 𝑝𝑟𝑜𝑐𝐶1)i 

𝑝𝑟𝑜𝑐𝑃2 𝑝𝑟𝑜𝑐𝐶2 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃2, 𝑝𝑟𝑜𝑐𝐶2)i 

…. 
 

…. …. 

𝑝𝑟𝑜𝑐𝑃𝑛 𝑝𝑟𝑜𝑐𝐶𝑛 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃𝑛, 𝑝𝑟𝑜𝑐𝐶𝑛)i 

Table 2: Local table for PLD model for client i  

The global PLD model 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙 is built using these clients-specific 𝑃𝐿𝐷𝑖. Every client sends their local 

model 𝑃𝐿𝐷𝑖
𝑡, representing the ‘most recent’ process launch behaviour in their machine, at regular 

time intervals t to an aggregator, for example, a security monitoring service provider. As the new local 
PLD models are received from the clients, the aggregator combines them into the global PLD model 

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1  to be used by every client at the next model update point (t+1). 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙 contains all the 

process launch events that occurred on any of the clients contributing to building the global model. 
Let’s call 𝑃𝐶𝑖 the set of unique ordered (parent process, child process) pairs contained in 𝑃𝐿𝐷𝑖. The 
entries in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙 model are defined by 𝑃𝐶𝑔𝑙𝑜𝑏𝑎𝑙 as follows: 

𝑃𝐶𝑔𝑙𝑜𝑏𝑎𝑙 =  ⋃ 𝑃𝐶𝑖

𝑁

𝑖=1

 

where N is the total number of clients participating in the training process. 

Then, the count of events in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙 is computed as the sum over all the clients: 

PLD score PLD score 
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𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝐵)𝑔𝑙𝑜𝑏𝑎𝑙 =  ∑ 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝐵)𝑖

𝑁

𝑖=1

 

Using 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙 we can obtain all the values required to compute PLD scores: 

• 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝐴) =  ∑ 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝐴, 𝑝𝑟𝑜𝑐𝑖)𝑔𝑙𝑜𝑏𝑎𝑙𝑝𝑟𝑜𝑐𝑖 ∈ 𝑃𝐶𝑔𝑙𝑜𝑏𝑎𝑙
   

• 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝐵) =  ∑ 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑖, 𝑝𝑟𝑜𝑐𝐵)𝑔𝑙𝑜𝑏𝑎𝑙𝑝𝑟𝑜𝑐𝑖 ∈ 𝑃𝐶𝑔𝑙𝑜𝑏𝑎𝑙
   

• 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 =  ∑ ∑ 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑖, 𝑝𝑟𝑜𝑐𝑗)
𝑔𝑙𝑜𝑏𝑎𝑙𝑝𝑟𝑜𝑐𝑗 ∈ 𝑃𝐶𝑔𝑙𝑜𝑏𝑎𝑙𝑝𝑟𝑜𝑐𝑖 ∈ 𝑃𝐶𝑔𝑙𝑜𝑏𝑎𝑙

 

It is worth noting that the PLD model training setup is in-between the data aggregation and federated 

learning scenarios described in Section 2.2. On the one hand, the global model 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡−1  is not 

required for computing the local models 𝑃𝐿𝐷𝑖
𝑡, those are recomputed from scratch by each client at 

each model update point. On the other hand, instead of sending individual process launch events to 
the aggregator, the clients carry out certain data processing locally and submit only their aggregated 
PLD tables. We also note that the global models at successive time points t and (t+1) are aggregated 
from the local models generated by the same clients, so some indirect dependency and similarities 

exist between 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  and 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1 , which is important for designing the poisoning attacks, as we 

will later see. 

2.4 Poisoning PLD model 

We consider an attack scenario in which an adversary has found a vulnerability and can compromise 
and control a common process 𝑝𝑟𝑜𝑐𝑀 in a victim machine. The adversary wants to perform malicious 
actions by launching a target child process 𝑝𝑟𝑜𝑐𝑇 from 𝑝𝑟𝑜𝑐𝑀 . 𝑝𝑟𝑜𝑐𝑀 is a common parent process, 
meaning that it often launches various child processes, and 𝑝𝑟𝑜𝑐𝑇 is a common child process, meaning 
that it is often launched by other processes. However, 𝑝𝑟𝑜𝑐𝑀 usually does not launch 𝑝𝑟𝑜𝑐𝑇. The 
𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) is low and it belongs to the low tail of the PLD score distribution. 
Consequently, the anomaly category for (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) is high (e.g. 5 - 7) according to the PLD model, 
and this process launch event will be considered suspicious if observed on a machine protected by the 
PLD model. 

The adversary wants to avoid the detection of the (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) event as a possible attack by making 
it look ‘less anomalous’ with respect to the global PLD model. More specifically, the goal of the 
adversary is to decrease the anomaly category for the (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) event via a poisoning attack 
against the global PLD model. 

We will now elaborate the generic adversary model introduced in Section 1.3. The goal of the 
poisoning attack is to introduce a backdoor in the global PLD model: process launch event  
(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) must be assigned to an anomaly category with a low index. This backdoor must be 

integrated in the global PLD model built at the next time interval 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 . The adversary controls 

the client m. To introduce the backdoor, the adversary wants to craft a poisoned local model 𝑃𝐿𝐷𝑚
𝑡 , 

which – when aggregated with the local models of the other clients 𝑃𝐿𝐷𝑖≠𝑚
𝑡  into 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1  – will lead 

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1  to output a lower anomaly category for (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) than 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 . 

The adversary has the following capabilities to realize the poisoning attack: 

• Access to one compromised client in the online distributed learning process 

• Injection of one local PLD model 𝑃𝐿𝐷𝑚
𝑡  that will be used to build 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1  

• Access to the global PLD model computed at the previous time point: 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  (strong 

adversary described in Section 1.3.3) 
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The adversary does not know the local PLD models 𝑃𝐿𝐷𝑖≠𝑚
𝑡  that will be sent by the other clients of 

the training process. 

We propose and will analyse three different approaches to poisoning the PLD model to achieve the 
adversary’s goal. These approaches are described and evaluated in detail in Section 3. 

1. Increase target process launch count: Increase 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) by increasing 
𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) 

2. Decrease parent or child process launch count: Increase 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) by 
decreasing 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) or 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇) 

3. Inject rare process launch events unrelated to the attack: Decrease anomaly category 
thresholds by filling in the low tail of the PLD_score distribution with process launch events 
unrelated to the planned attack 

3. Model poisoning approaches 

3.1 Experimental setup 

We use a research setup where 247 clients collaborate to train a global PLD model in an online 
distributed manner. Each client records their process launch events and retrains their local PLD model 

𝑃𝐿𝐷𝑖
𝑡 once a day using the process launch records. The latest local PLD model 𝑃𝐿𝐷𝑖

𝑡 of each client is 
sent to the aggregator for combining as presented in Section 2.3. The result of this aggregation is the 

global PLD model 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 , which is sent back to each of the 247 clients participating in the training. 

We took the local PLD models of each client at time (t-1) in order to build 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 . This model is 

based on 22,478,835 process launch events in total, which are divided into 41,975 distinct process 
launch events (unique ordered pairs of processes). The client, which reported the largest number of 
events, has 5,610,402 process launches in its local PLD model, accounting for one quarter of all the 
process launch events used for the global PLD model. On average, one client reported 91,007 events. 
Computing the PLD score for every process launch and modelling their distribution, we obtained the 
threshold values shown in Table 3, which define the anomaly categories: 

Threshold PLD score threshold value Anomaly category 

10th percentile 2.237847 1 

1st percentile 1.216247 2 

1st 1000-quantile 0.293015 3 

1st 10,000-quantile 0.040073 4 

1st 100,000-quantile 0.001532 5 

1st 1,000,000-quantile 0.000219 6 

1st 10,000,000-quantile 0.000003 7 

- - 8 

Table 3: PLD score thresholds in 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕  for different anomaly categories. 

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 , its thresholds and PLD scores are used by the adversary to construct malicious entries to 

include into 𝑃𝐿𝐷𝑚
𝑡  in order to poison 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1 . To evaluate the three attack approaches introduced 

in Section 2.4 under different conditions, we randomly selected several pairs representing anomalous 
process launch events with respect to 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 . For each of the selected pairs (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇), we 

tried to decrease its anomaly category. Table 4 presents the ten anomalous process launches we 

randomly selected and their characteristics with respect to 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 . These pairs are rarely observed 
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(168 is the greatest value, but most of the values are single-digit), they have low PLD scores and 
consequently belong to the high-index anomaly categories from 5 to 7. We will use these pairs for the 
attack analysis in Sections 3.2 and 3.3. 

Table 4: 10 randomly selected anomalous process launches with their statistics in 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕 . 

3.2 ‘Increase target process launch count’ approach 

The first way to decrease the anomaly category of the (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) pair is by increasing its PLD 
score. Knowing the threshold values of the global PLD model and defining a target anomaly category 
(e.g., 2), we can infer the minimum PLD score required for our pair to fall in the desired category.  

3.2.1 Attack description and implementation 

The first proposed approach to increase 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) is by increasing 

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇). Given that we know 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 , we can compute the target score 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 

to reach in order to fall in the desired anomaly category. Then for the poisoning attack to succeed, we 
need to satisfy the following inequality: 

  𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) >  𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 

Replacing 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) by its formula, we obtain the following inequality:  

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) + 𝛼1

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) + 𝛼2

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
 × 

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇) +  𝛼3
𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

 >  𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 

(For simplicity, we ignore the 𝛽𝑖 since they are typically negligible compared to real-life large 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 
values.) 

Now we can compute the minimum 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) required to satisfy this inequality. We set 

𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 as the targeted anomaly category threshold to exceed and we take the values for 

𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑 and 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 from 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 . 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) will be the unknown value 

of the inequality that we want to solve. Since 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) is included in 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡, 

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑 and 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙, we express those values as functions of our unknown. We obtain: 

• 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀) =  𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡

𝑡 (𝑝𝑟𝑜𝑐𝑀) +  𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) 

• 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑
𝑡+1 (𝑝𝑟𝑜𝑐𝑇) =  𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑

𝑡 (𝑝𝑟𝑜𝑐𝑇) +  𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) 

𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝒄𝒂𝒍𝒍𝒑𝒂𝒓𝒆𝒏𝒕 𝒂𝒍𝒍𝒄𝒉𝒊𝒍𝒅 𝑷𝑳𝑫_𝒔𝒄𝒐𝒓𝒆 An. Cat. 

postgres.exe  conhost.exe  3 384553 2624273 0,000067 7 

fshoster32.exe  chrome.exe  1 114103 274529 0,000725 6 

Microsoft.Nav.Client.exe  cmd.exe  1 3673 3418012 0,001808 5 

SearchIndexer.exe  WerFault.exe  1 976465 11982 0,001940 5 

Dropbox.exe  sc.exe  2 8712 1624257 0,003193 5 

services.exe  sc.exe  168 605335 1624257 0,003841 5 

chrome.exe  rundll32.exe  3 274355 53447 0,004614 5 

svchost.exe  AcroRd32.exe  31 2441976 39003 0,007319 5 

SQLAGENT.EXE  conhost.exe  2 1961 2624273 0,008780 5 

svchost.exe  POWERPNT.EXE  4 2441976 2426 0,015215 5 
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• 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡+1 =  𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

𝑡 + 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) 

Then the inequality in the unknown 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1  to solve is the following: 

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 + 𝛼1

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡 +  𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡+1

𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑛𝑡
𝑡 (𝑝𝑟𝑜𝑐𝑀) +  𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡+1 + 𝛼2

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡 + 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡+1  × 
𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑

𝑡 (𝑝𝑟𝑜𝑐𝑇) +  𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 +  𝛼3

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡 +  𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡+1

 >  𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 

With simple transformations, this inequality can be turned into a quadratic inequality in a single 
variable with 0 as the right-hand side. We can find the solutions of the corresponding quadratic 

equation, which give us the range(s) of values of 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1  that satisfy the target inequality. Then in the 

found range(s), we need to take the minimum positive value as our crafted 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) 

value to poison the global PLD model, and the poisoning attack is carried out by adding the following 
single record to the local PLD model 𝑃𝐿𝐷𝑚

𝑡 . 

Parent process Child process Join call 

𝑝𝑟𝑜𝑐𝑀 𝑝𝑟𝑜𝑐𝑇 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) 

 

Three technical remarks: 

• We look for the minimum positive value of 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) in order to keep the 

adversarial action as modest as possible, the reasons for which were discussed in Section 
1.3.1. 

• While in principle quadratic equations may not have real-valued roots or the range(s) 
discussed above may not have positive values, it is easy to see that acceptable values of 

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1  can always be found in our specific case. In particular, if 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡+1  is very large and a 

dominant part of all the other values, the left-hand side of the inequality above will be 
arbitrarily close to 1, which is a fairly high value for PLD scores and nearly always guarantees 
a ‘non-suspicious’ anomaly category. So, acceptable solutions do exist and the adversary just 
needs to find the smallest among those. 

• The formulae for 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀), 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑

𝑡+1 (𝑝𝑟𝑜𝑐𝑇) and 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡+1  above ignore the 

contributions to the model update from the benign clients, which the adversary, of course, 
cannot know and control. The same applies to the anomaly category threshold values. This is 
where the adversary needs to rely on the note in the end of Section 2.3 on similarities between 

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  and  𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1 . We show a practical approach to handling this issue in the next 

subsection. 

3.2.2 Experimental results 

We compute our solution to 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) using the 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀),  𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇) 

and 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 values from 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 . The anomaly category threshold that we choose for 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡  to 

reach is also taken from 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 , which is the most recent global PLD model available to the 

adversary. However, our attack targets 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1  and we do not know its parameters. While we 

invoke the assumption about 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  and 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1  similarity, the two models have different 

𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀),  𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇), 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙, and category threshold values. In our experiments, 

in order to deal with those differences between two consecutive PLD models and increase the success 

chance for the attack, we heuristically increase the computed 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) values by 20%. 

As a part of the analysis, we compare the performance of the poisoning attacks using the exact 



 

 
 

23 

computed values (simply ignoring the differences between consecutive models) and the values 
heuristically increased by 20%. 

In the experiments, we computed the required 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) values to be added to the local 

model 𝑃𝐿𝐷𝑚
𝑡  in order to move our ten selected process launch pairs (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) (see Table 4) to 

the anomaly categories 1, 2 or 3 in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 . The following three tables report the results of those 

experiments, including the computed 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) values and their 20% increased 

versions, the PLD scores and the anomaly categories we obtain in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1  as the results of our 

poisoning attacks. The target PLD scores used for the computations are the threshold values to exceed 
in order to reach the anomaly categories 1, 2 and 3, which are equal to respectively 2.237847, 
1.216247 and 0.293015 at time t, as presented in Table 2. 

Table 5: 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 added to 𝑷𝑳𝑫𝒎
𝒕  for ‘increase process launch count’ poisoning attack, resulting PLD scores 

and anomaly categories returned by poisoned 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕+𝟏 . ‘Base’ results for computed values of 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 and 

‘+20%’ for increased values. Target anomaly category = 1 (𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕 = 2.237847 from 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕 ). 

 

Table 6: 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 added to 𝑷𝑳𝑫𝒎
𝒕  for ‘increase process launch count’ poisoning attack, resulting PLD scores 

and anomaly categories returned by poisoned 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕+𝟏 . ‘Base’ results for computed values of 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 and 

‘+20%’ for increased values. Target anomaly category = 2 (𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕 = 1.216247 from 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕 ). 

𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻 
𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝑷𝑳𝑫_𝒔𝒄𝒐𝒓𝒆 Category 

Base +20% Base +20% Base +20% 

postgres.exe  conhost.exe  145080 174097 2,213 2,496 1 1 

fshoster32.exe  chrome.exe  3244 3893 2,012 2,397 2 1 

Microsoft.Nav.Client.exe  cmd.exe  1895 2274 2,245 2,521 1 1 

SearchIndexer.exe  WerFault.exe  1291 1550 2,169 2,553 2 1 

Dropbox.exe  sc.exe  1680 2017 2,232 2,595 2 1 

services.exe  sc.exe  126728 152107 2,180 2,497 2 1 

chrome.exe  rundll32.exe  1507 1808 2,105 2,508 2 1 

svchost.exe  AcroRd32.exe  12563 15082 2,146 2,454 2 1 

SQLAGENT.EXE  conhost.exe  692 830 2,238 2,550 2 1 

svchost.exe  POWERPNT.EXE  775 930 2,184 2,497 2 1 

𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻 
𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝑷𝑳𝑫_𝒔𝒄𝒐𝒓𝒆 Category 

Base +20% Base +20% Base +20% 

postgres.exe  conhost.exe  65266 78320 1,200 1,394 2 2 

fshoster32.exe  chrome.exe  1731 2077 1,093 1,306 3 2 

Microsoft.Nav.Client.exe  cmd.exe  833 1000 1,221 1,413 2 2 

SearchIndexer.exe  WerFault.exe  668 802 1,179 1,400 2 2 

Dropbox.exe  sc.exe  838 1006 1,213 1,431 2 2 

services.exe  sc.exe  60345 72448 1,181 1,384 2 2 

chrome.exe  rundll32.exe  805 967 1,143 1,368 3 2 

svchost.exe  AcroRd32.exe  5917 7107 1,164 1,361 3 2 

SQLAGENT.EXE  conhost.exe  323 388 1,217 1,420 2 2 

svchost.exe  POWERPNT.EXE  365 439 1,187 1,388 2 2 
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Table 7: 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 added to 𝑷𝑳𝑫𝒎
𝒕  for ‘increase process launch count’ poisoning attack, resulting PLD scores 

and anomaly categories returned by poisoned 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕+𝟏 . ‘Base’ results for computed values of 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 and 

‘+20%’ for increased values. Target anomaly category = 3 (𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕 = 0.293015 from 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕 ). 

We can see that the attack succeeds in around one half of the cases when using the exact 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 

values computed using 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 , and the success rate is higher when targeting the anomaly 

categories 2 and 3. The attack always succeeds when taking the increased (20%) values, as we reach 
the targeted anomaly category in all the 30 cases we tested. So, using the proposed technique, the 
adversary achieves their goal despite the lack of knowledge and control over the training contributions 
of the benign clients. 

Comparing the obtained PLD scores to the ones we targeted, we observe that the errors – explained 
by the differences between the two consecutive global PLD models at times t and (t+1) – do not exceed 
10%. While the errors show that the parameters of the global PLD model do change over time, it 
appears that two consecutive global PLD models are still similar enough for the adversary’s purposes 
(which technically come down to predicting accurately the 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 value to inject for poisoning the 

global model). The 10% bound on the observed errors explains why the attacks using the exact 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 

values fail sometimes and the attacks using the increased values always succeed. 

We also can see that the 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values to inject vary significantly across the studied cases 

(combination of the ten selected process launch events and the three target anomaly categories). 
Predictably, reaching a ‘less suspicious’ anomaly category (e.g., 1 vs. 2) always required higher 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 

values. It is more interesting to note that for different process launch events, the required 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 

values to inject can differ by two orders of magnitude. When either the parent process or the child 
process is not very frequently used and 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡 or 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑 is in the range of tens of thousands, 

the adversary needs to inject only a few hundreds or a few thousands of process launch events in 
order to succeed. The attack can be carried out stealthily in this case since a single client reports 80,000 
process launches on average and injecting a few thousands more events may not be easily noticed. 
However, when both parent and child processes are popular, that is, both 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡 and 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑 are 

high numbers (in the range of millions), the values of 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 start exceeding 100,000 (when targeting 

the anomaly category 1). Such massive injections to local models are, of course, easier to detect. 

Takeaways: To summarize the experimental results, we see that the ‘increase process launch count’ 
poisoning attack is very accurate and effective for reaching the adversarial goals. The success rate is 
100% when we conservatively increase the computed 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values by 20%. Furthermore, in many 

𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻 
𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝑷𝑳𝑫_𝒔𝒄𝒐𝒓𝒆 Category 

Base +20% Base +20% Base +20% 

postgres.exe  conhost.exe  13683 16420 0,289 0,344 3 3 

fshoster32.exe  chrome.exe  410 492 0,263 0,316 4 3 

Microsoft.Nav.Client.exe  cmd.exe  171 205 0,294 0,350 3 3 

SearchIndexer.exe  WerFault.exe  154 185 0,285 0,341 3 3 

Dropbox.exe  sc.exe  187 225 0,293 0,350 3 3 

services.exe  sc.exe  13022 15660 0,284 0,339 3 3 

chrome.exe  rundll32.exe  189 228 0,275 0,331 4 3 

svchost.exe  AcroRd32.exe  1251 1508 0,280 0,334 4 3 

SQLAGENT.EXE  conhost.exe  68 82 0,295 0,352 3 3 

svchost.exe  POWERPNT.EXE  76 92 0,287 0,343 3 3 
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cases the attack requires the adversary to inject relatively small numbers of process launch events, 
which makes it stealthy. 

3.3 ‘Decrease parent or child process launch count’ approach 

3.3.1 Attack description and implementation 

The second proposed approach to increasing 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) is based on decreasing the 
values of 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) or 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇). This attack is challenging because it is not possible 

for the adversary to prevent the benign clients from reporting process launches involving 𝑝𝑟𝑜𝑐𝑀 or 
𝑝𝑟𝑜𝑐𝑇. One solution, however, is to insert illegal inputs in the controlled local PLD model 𝑃𝐿𝐷𝑚

𝑡 . We 
can decrease 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) and 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇) in the global PLD model by inserting to 

𝑃𝐿𝐷𝑚
𝑡  negative counts for process launch events involving 𝑝𝑟𝑜𝑐𝑀 as a parent and 𝑝𝑟𝑜𝑐𝑇 as a child.  

In the analysis, we start in the same way as in Section 3.2. Given that we know 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  and its 

anomaly category threshold values, we can infer the 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 value sufficient for the PLD score of 

(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) to exceed in order to fall in the desired anomaly category. The starting inequality is 
exactly the same as in Section 3.2.1: 

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) +  𝛼1

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) + 𝛼2

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
 ×  

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇) +  𝛼3
𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

  >  𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 

In this attack, we keep 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) as a fixed value taken from 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  and we consider 

either 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀) or 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑

𝑡+1 (𝑝𝑟𝑜𝑐𝑇) as the unknown to solve the inequality for. In both 

cases, we need to express 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡+1  as a function of the unknown (with a caveat similar to the one 

discussed in the very end of Section 3.2.1): 

• 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡+1 =  𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

𝑡 + 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀), when  𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡

𝑡+1 (𝑝𝑟𝑜𝑐𝑀) is the unknown 

• 𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙
𝑡+1 =  𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

𝑡 + 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑
𝑡+1 (𝑝𝑟𝑜𝑐𝑇), when  𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑

𝑡+1 (𝑝𝑟𝑜𝑐𝑇) is the unknown 

Considering the case when 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀) is the unknown, the above inequality can be 

transformed into the following inequality in 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀):  

𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀) < 

<   
𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙

𝑡 × (𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡 + 𝛼1) − 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 × (𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡

𝑡 (𝑝𝑟𝑜𝑐𝑀) + 𝛼2) × (𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑
𝑡 (𝑝𝑟𝑜𝑐𝑇) + 𝛼3)

𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 × (𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑
𝑡 (𝑝𝑟𝑜𝑐𝑇) +  𝛼3) − (𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡 + 𝛼1)
 

So, assuming similarity of 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  and 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1  if only the benign clients contribute to the model 

update, we can find the maximum acceptable value of 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀), that is, the maximum 

number of events when 𝑝𝑟𝑜𝑐𝑀 starts other processes as reported by all the clients in the global PLD 

model update for the poisoning attack to succeed. In the same way, we can find 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑
𝑡+1 (𝑝𝑟𝑜𝑐𝑇). 

Since the PLD score of (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  is too low, we expect the found values of  

𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡+1 (𝑝𝑟𝑜𝑐𝑀) and 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑

𝑡+1 (𝑝𝑟𝑜𝑐𝑇) to be lower than the values of 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡 (𝑝𝑟𝑜𝑐𝑀) and 

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑
𝑡 (𝑝𝑟𝑜𝑐𝑇) respectively. Thus, the poisoning attack needs to decrease one of these two values, 

which can be achieved by creating a fake process 𝑝𝑟𝑜𝑐𝐹 used only in fake process launch events 
(𝑝𝑟𝑜𝑐𝐹 , 𝑝𝑟𝑜𝑐𝑇) and (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝐹). Then the adversary needs to satisfy one of the following two 
conditions where both target values will be negative: 
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• 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝐹) =  𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡

𝑡+1 (𝑝𝑟𝑜𝑐𝑀)  −  𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡
𝑡 (𝑝𝑟𝑜𝑐𝑀)  

• 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝐹 , 𝑝𝑟𝑜𝑐𝑇) =  𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑

𝑡+1 (𝑝𝑟𝑜𝑐𝑇)  − 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑
𝑡 (𝑝𝑟𝑜𝑐𝑇)  

So, the poisoning attack can be carried out by adding one of the following records to the local PLD 
model 𝑃𝐿𝐷𝑚

𝑡 . Since the adversary cannot hope for stealthiness in this attack, they are essentially free 
in choosing one of these two options. 

Parent process Child process Join call 

𝑝𝑟𝑜𝑐𝐹 𝑝𝑟𝑐𝑇 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝐹 , 𝑝𝑟𝑜𝑐𝑇) 

 

Parent process Child process Join call 

𝑝𝑟𝑜𝑐𝑀 𝑝𝑟𝑜𝑐𝐹 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝐹) 

 

3.3.2 Experimental results 

We run the experiments in the way described in Section 3.2.2. To compute the target values of 

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝐹) and 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡+1 (𝑝𝑟𝑜𝑐𝐹 , 𝑝𝑟𝑜𝑐𝑇), we use 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀), 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇) and 

𝑐𝑎𝑙𝑙𝑡𝑜𝑡𝑎𝑙 from 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 . While in the previous subsection we considered injection of either fake 

parent or fake child records, in the experiments we inject them both, because that increases the attack 
effectiveness and because that is what real-life adversaries are likely to do. So, we inject both fake 

parent and child records with the computed 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1  values to the local PLD model 𝑃𝐿𝐷𝑚

𝑡  and evaluate 

the success of the attack, which is defined as moving our ten selected (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) pairs (see Table 

4) to the anomaly categories 1 or 3 in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 . Unlike the previous attack, we do not apply any 

heuristic adjustments to 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛
𝑡+1 (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝐹) and 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛

𝑡+1 (𝑝𝑟𝑜𝑐𝐹 , 𝑝𝑟𝑜𝑐𝑇) to account for the lack 

of our knowledge about 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 . The results show that such adjustments would not be helpful. 

The following two tables report the results of the experiments. They show: 

– the computed 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values, which tell how many process launch events we need to inject 

in the local PLD model for both (𝒑𝒓𝒐𝒄𝑴, 𝑝𝑟𝑜𝑐𝐹) and (𝑝𝑟𝑜𝑐𝐹 , 𝒑𝒓𝒐𝒄𝑻); 
– the resulting 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) and 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇); 

– the PLD scores and the anomaly categories we obtain in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1  as the results of our 

poisoning attacks. 

The target PLD scores used for the computations are the threshold values to exceed in order to reach 
the anomaly categories 1 and 3, which are equal to respectively 2.237847 and 0.293015 at time t, as 
presented in Table 2. 
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Table 8: Negative 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 added to 𝑷𝑳𝑫𝒎
𝒕  for ‘decrease parent or child process launch count’ poisoning 

attack, resulting PLD_score and anomaly category returned by poisoned 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕+𝟏 . Target anomaly 

category = 1 (𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕 = 2.237847 from 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕 ). 

Table 9: Negative 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 added to 𝑷𝑳𝑫𝒎
𝒕  for ‘decrease parent or child process launch count’ poisoning 

attack, resulting PLD_score and anomaly category returned by poisoned 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕+𝟏 . Target anomaly 

category = 3 (𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕 = 0.293015 from 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕 ). 

We can see that the attack succeeds in 70% of the cases when targeting the anomaly category 1 and 
in 80% of the cases for the anomaly category 3. More importantly, we note that the returned 
categories are exactly the same, regardless of what our target category is, so the attack accuracy is 
not high.  

The main challenge of this attack is that in order to succeed it must decrease 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) and 

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇) of frequently used processes dramatically, by several orders of magnitude, e.g., from 
1,000,000 to 1,000 or from 10,000 to 100. If the differences between 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) (respectively 

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝑇)) in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  and 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡+1  are large, it is difficult to compute the records to inject 

accurately, and then the attack either fails by not increasing the PLD score sufficiently or over-
performs by increasing it too much. Even when we succeed in targeting the anomaly category 1, the 
PLD score we obtain is often much larger than the one we targeted (2.237847). For the 
(Microsoft.Nav.Client.exe, cmd.exe) pair, we decrease 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑀) so much that it becomes 

negative, which results in the negative PLD score and the highest anomaly category (9) assigned. 
Besides, the need for the malicious client to use large negative values in the injected records can make 
the sum of all the process launch events, which the client reports from its local model, negative. 

𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻 
𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍

𝒕+𝟏  𝑷𝑳𝑫 
𝒔𝒄𝒐𝒓𝒆 

Cat. 
𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻 𝒄𝒂𝒍𝒍𝒑𝒂𝒓𝒆𝒏𝒕 𝒄𝒂𝒍𝒍𝒄𝒉𝒊𝒍𝒅 

postgres.exe  conhost.exe  -384542 -2624195 5831 22816 0,739 3 

fshoster32.exe  chrome.exe  -114067 -274441 6080 18491 0,200 4 

Microsoft.Nav.Client.exe  cmd.exe  -3671 -3415250 -23 33909 -24,922 9 

SearchIndexer.exe  WerFault.exe  -975619 -11972 36597 56 10,676 1 

Dropbox.exe  sc.exe  -8700 -1621940 42 14643 68,698 1 

services.exe  sc.exe  -604296 -1621469 21155 15114 11,246 1 

chrome.exe  rundll32.exe  -273790 -53337 18831 422 8,457 1 

svchost.exe  AcroRd32.exe  -2433987 -38876 96944 883 8,018 1 

SQLAGENT.EXE  conhost.exe  -1954 -2613973 8 33038 152,20 1 

svchost.exe  POWERPNT.EXE  -2425361 -2410 105570 7 109,60 1 

𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻 
𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍

𝒕+𝟏  𝑷𝑳𝑫 
𝒔𝒄𝒐𝒓𝒆 

Cat. 
𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻 𝒄𝒂𝒍𝒍𝒑𝒂𝒓𝒆𝒏𝒕 𝒄𝒂𝒍𝒍𝒄𝒉𝒊𝒍𝒅 

postgres.exe  conhost.exe  -384466 -2623673 5907 23338 0,714 3 

fshoster32.exe  chrome.exe  -113821 -273850 6326 19082 0,186 4 

Microsoft.Nav.Client.exe  cmd.exe  -3651 -3396898 -3 52261 -124,45 9 

SearchIndexer.exe  WerFault.exe  -969997 -11903 42219 125 4,147 1 

Dropbox.exe  sc.exe  -8618 -1606544 124 30039 11,352 1 

services.exe  sc.exe  -597397 -1602945 28054 33638 3,815 1 

chrome.exe  rundll32.exe  -270034 -52606 22587 1153 2,581 1 

svchost.exe  AcroRd32.exe  -2380817 -38029 150114 1730 2,650 1 

SQLAGENT.EXE  conhost.exe  -1903 -2545365 59 101646 6,738 1 

svchost.exe  POWERPNT.EXE  -2314453 -2301 216478 116 3,247 1 
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Takeaways: To summarize the experimental results, we see that the ‘decrease parent or child process 
launch count’ poisoning attack can be effective in some cases, but can also fail even if we inject both 
fake parent and fake child records at the same time. It succeeds in reaching the anomaly category 1 
in many cases, but it is quite inaccurate for anomaly categories other than 1. Finally, the attack 
requires to inject large negative numbers of process launch events (in the range of millions sometimes) 
to reach its goal, which makes it easy to detect and prevent via input validation. 

3.4 ‘Inject rare process launch events unrelated to the attack’ 
approach 

3.4.1 Attack description and implementation 

Compared with the previous two poisoning attacks in Sections 3.2 and 3.3, the last attack we evaluate 
takes a different approach. Instead of modifying the PLD score of (𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) pairs, its goal is to 
decrease the threshold values for several anomaly categories. By moving an appropriate number of 
the threshold values below the value of 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇), we can ‘lift’ the (𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) 
pair to a less suspicious anomaly category without modifying the pair’s PLD score. In order to decrease 
anomaly category threshold values, we need to drift and densify the PLD scores distribution towards 
low values. 

For this attack, we look for processes 𝑝𝑟𝑜𝑐𝑃 ≠ 𝑝𝑟𝑜𝑐𝑀 and 𝑝𝑟𝑜𝑐𝐶 ≠ 𝑝𝑟𝑜𝑐𝑇 with high 
𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡(𝑝𝑟𝑜𝑐𝑃) and 𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑(𝑝𝑟𝑜𝑐𝐶) values respectively. Such processes combined in a process 

launch event will have a low PLD score, if 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃, 𝑝𝑟𝑜𝑐𝐶) is low. Then if the PLD score of the 

event is lower than 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇), the event is a candidate for injection into 𝑃𝐿𝐷𝑚
𝑡  since 

it densifies the PLD score distribution in values lower than 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇) and will 
contribute to shifting the anomaly category threshold values below that score. So, we need to find as 
many such (𝑝𝑟𝑜𝑐𝑃 , 𝑝𝑟𝑜𝑐𝐶) process pairs as we can and compute the maximum 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃 , 𝑝𝑟𝑜𝑐𝐶) 

value for each pair to maximize its ‘threshold shifting’ contribution while keeping its PLD score in 
𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡  below 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇)3. The maximum acceptable 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 value is computed 

from the inequality defined in Section 3.2.1, we just need to reverse the inequality sign: 

  𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑃 , 𝑝𝑟𝑜𝑐𝐶) <  𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) 

The computation is carried out essentially in the same way as in 3.2.1, by reducing the task to solving 
a quadratic equation.  

All the found candidate process launch pairs, together with their computed maximum 
𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃 , 𝑝𝑟𝑜𝑐𝐶) values, are added to the local PLD model 𝑃𝐿𝐷𝑚

𝑡 . It is worth noting that none 

of the injected process launch pairs contain 𝑝𝑟𝑜𝑐𝑀 as a parent process or 𝑝𝑟𝑜𝑐𝑇 as a child process. 
This was done in order to avoid impacting 𝑃𝐿𝐷_𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑜𝑐𝑀, 𝑝𝑟𝑜𝑐𝑇), increasing the chances that as 
many as possible anomaly category threshold values will be shifted below that score. This also hides 
the final goal of the poisoning attack because none of the process launch events we are injecting into 
the local (and then the global) model involve the malicious process launch operation that the 
adversary eventually wants to carry out and avoid detection.  

Parent process Child process Join call 

𝑝𝑟𝑜𝑐𝑃1 𝑝𝑟𝑜𝑐𝐶1 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃1, 𝑝𝑟𝑜𝑐𝐶1) 

𝑝𝑟𝑜𝑐𝑃2 𝑝𝑟𝑜𝑐𝐶2 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃2, 𝑝𝑟𝑜𝑐𝐶2) 

 
3 For each process pair (𝑝𝑟𝑜𝑐𝑃 , 𝑝𝑟𝑜𝑐𝐶), our attack injects 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 process launch events (𝑝𝑟𝑜𝑐𝑃  → 𝑝𝑟𝑜𝑐𝐶), as 

recorded in Table 10. 
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…. …. …. 

𝑝𝑟𝑜𝑐𝑃𝑛 𝑝𝑟𝑜𝑐𝐶𝑛 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛(𝑝𝑟𝑜𝑐𝑃𝑛, 𝑝𝑟𝑜𝑐𝐶𝑛) 

Table 10: The local table of 𝑷𝑳𝑫𝒎
𝒕 . 

In this model poisoning scenario, we do not aim to reach a specific anomaly category for our target 
process launch event since it may not be possible to fill the PLD score distribution with sufficiently 
many events having sufficiently low PLD score values. We rather want to evaluate what the lowest 
anomaly category that we can reach using this poisoning attack is, given that our target pair 
(𝑝𝑟𝑜𝑐𝑀 , 𝑝𝑟𝑜𝑐𝑇) belongs initially to a specific anomaly category. We also want to investigate how many 
process launch events overall we need to inject to succeed with the attack. For the experiments, we 
selected two process pairs, highly relevant in the cybersecurity context, which belong to the categories 
6 and 5. The cases of these two target pairs will be analysed separately, and the pairs are as follows: 

Table 11: Process pairs selected for experimenting with ‘Inject rare process launch events unrelated to the 
attack’ approach and their parameters in 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍

𝒕 . 

3.4.2 Experimental results 

We selected 100 processes with the highest 𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑒𝑛𝑡 values and 100 processes with the highest 

𝑐𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑 values in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 . We built all the possible 10,000 pairwise combinations and computed 

their PLD scores from 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 . As explained above, we kept only the pairs with PLD score lower than 

the PLD score of the target process launch pair and discarded the others. Then we computed the 
maximum acceptable 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values for each of the remaining process pairs in order to fill in the PLD 

score distribution of 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1  with as many low PLD score values as possible. We note that those 

maximum 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values are computed from the parameters of 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  but with the goal of 

poisoning 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 . Since there is some difference between the two consecutive global models (see, 

e.g. the end of Section 3.2.1), we chose to be conservative and reduced the value of 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 for each 

process launch pair that we injected by 10% to help ensure that the PLD scores of the injected pairs 

remain lower than the PLD score of the target process launch pair in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 . 

First, we took (fshoster32.exe, chrome.exe) as a target process launch pair. In 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 , it belongs to 

the anomaly category 6. We found 616 candidate process launch pairs for injection out of the 10,000 
pairs tested. The sum of the 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values for all these 616 pairs was equal to 9,047 process launch 

events that we could use for increasing the density in the low value end of the PLD score distribution. 
The average of the 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values for all those pairs was 15. By injecting the process launch events to 

the local PLD model 𝑃𝐿𝐷𝑚
𝑡 , we succeeded in reducing the anomaly category of (fshoster32.exe, 

chrome.exe) from 6 to 4. The following table shows the statistics of the target process launch pair in 
the initial and poisoned PLD models: 

Table 12: Comparison of 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕  and 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍

𝒕+𝟏  models for (fshoster32.exe, chrome.exe) 

For the (OfficeClickToRun.exe, rundll32.exe) pair from the anomaly category 5, we found 3,258 
candidate process launch pairs for injection (the same 10,000 pairs were tested). The sum of the 

𝒑𝒓𝒐𝒄𝑴 𝒑𝒓𝒐𝒄𝑻 𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝒄𝒂𝒍𝒍𝒑𝒂𝒓𝒆𝒏𝒕 𝒄𝒂𝒍𝒍𝒄𝒉𝒊𝒍𝒅 𝑷𝑳𝑫_𝒔𝒄𝒐𝒓𝒆 An. Cat. 

fshoster32.exe  chrome.exe  1 114103 274529 0,00072 6 

OfficeClickToRun.exe rundll32.exe 1 18619 53447 0.02281 5 

𝑷𝑳𝑫 𝒎𝒐𝒅𝒆𝒍 Poisoning events  𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝒄𝒂𝒍𝒍𝒑𝒂𝒓𝒆𝒏𝒕 𝒄𝒂𝒍𝒍𝒄𝒉𝒊𝒍𝒅 𝑷𝑳𝑫_𝒔𝒄𝒐𝒓𝒆 An. Cat. 

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  - 1 114103 274529 0,00072 6 

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1  (poisoned) 

+9047 (616 
unique pairs) 

1 120147 292932 0.00065 4 
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𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values for all these pairs was equal to 345,466 process launch events. The average of the 

𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values for all the found pairs was 106. By injecting the process launch events to the local PLD 

model 𝑃𝐿𝐷𝑚
𝑡 , we succeeded in reducing the anomaly category of (OfficeClickToRun.exe, rundll32.exe) 

from 5 to 2. The following table shows the statistics of the target process launch pair in the initial and 
poisoned PLD models: 

Table 13: Comparison of 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍
𝒕  and 𝑷𝑳𝑫𝒈𝒍𝒐𝒃𝒂𝒍

𝒕+𝟏  models for (OfficeClickToRun.exe, rundll32.exe) 

As we can see, going from the anomaly category 6 to the anomaly category 4 was achieved by injecting 
some hundreds of process launch records, with a very modest average value of 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛. Since the 

clients report around 80,000 process launch events on average in one round of training, injecting 9,047 
process launch events does not look as a serious anomaly. On the other hand, the effort to go from 
the anomaly category 5 to the anomaly category 2 required the injection of over 300,000 process 
launch events, which is significantly larger than the average of 80,000. We have to remember, 
however, that some benign clients report sometimes up to 5,000,000 process launches in one local 
model. Using such a client to perform the poisoning attack would certainly make the injection less 
noticeable. 

The anomaly category thresholds selection for the PLD model is based on quantiles exponentially 
decreasing in size, as presented in Table 1 above. This means that for a target process pair to move to 
the anomaly category 1, we need roughly to inject 10% of the total number of process launch events 
in the global PLD model, injecting around 1% is sufficient for moving to the category 2, and so on. In 

our experimental setup, with over 22,000,000 process launch events in 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡 , we must inject 

around 2,200,000 new events with low PLD scores to reach the anomaly category 1 and around 
220,000 to reach the category 2. 

 

Figure 4: PLD score distribution for initial and poisoned PLD models in the experiment with 
(fshoster32.exe, chrome.exe). Target category is 4. 9047 process launch events injected in the 

poisoned model. Distributions are highly similar. 

𝑷𝑳𝑫 𝒎𝒐𝒅𝒆𝒍 Poisoning events  𝒄𝒂𝒍𝒍𝒋𝒐𝒊𝒏 𝒄𝒂𝒍𝒍𝒑𝒂𝒓𝒆𝒏𝒕 𝒄𝒂𝒍𝒍𝒄𝒉𝒊𝒍𝒅 𝑷𝑳𝑫_𝒔𝒄𝒐𝒓𝒆 An. Cat. 

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  - 1 18619 53447 0.02281 5 

𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1  (poisoned) 

+345466 (3258 
unique) 

1 18740 53759 0.02305 2 

PLD score 
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Figure 5: PLD score distribution for initial and poisoned PLD models in the experiment with 
(OfficeClickToRun.exe, rundll32.exe). Target category is 2. 345,466 process launch events injected 

in the poisoned model. Distributions are highly similar. 

It is important to analyse the impact of our attacks on the PLD score distribution, comparing the 

distributions of the poisoned model 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1  and the initial model 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 . Figures 4 and 5 depict 

these distributions for the two studied attacks. Looking at the place where we poison the model (PLD 
score values close to 0), we do not see any difference between the initial and poisoned models for the 
first attack, and the discrepancy is very modest for the second attack. The differences are much more 
noticeable in the range of PLD scores between 8 and 10, but those are certainly not due to the attacks 
and explained by concept drift processes captured by the retraining. This shows that our poisoning 
attacks are hard to detect by superficially comparing the PLD score distributions and the concept drift 
effects are more significant. 

Taking into account that the numbers of injected events are quite small compared with the total 
training set size (over 22 million), this is not very surprising. The effects of the poisoning attacks can 
be better observed in Figures 6 and 7, where we zoom in the range of low PLD score values. We see 
that the first poisoning attack actually led to the increased density of the PLD score distribution by a 
factor of 2 in the interval close to 0 (Figure 6), and a greater change can be observed for the second 
attack, where the density increased by a factor of 30. While the former effect can still be explained by 
concept drift, the latter increase should raise an alarm. So, monitoring closely how the model changes 
in sensitive places certainly makes good sense. 

 

Figure 6: PLD score distribution for initial and poisoned PLD models in the interval close to 0 in the 
experiment with (fshoster32.exe, chrome.exe). 

PLD score 

PLD score PLD score 
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Figure 7: PLD score distribution for initial and poisoned PLD models in the interval close to 0 in the 
experiment with (OfficeClickToRun.exe, rundll32.exe). 

Finally, we review the poisoning attacks effect in terms of the anomaly category threshold values in 

Figures 8 and 9. In both cases, we see that while the initial model 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  has well distributed 

anomaly category thresholds around 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡, the poisoned model 𝑃𝐿𝐷𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1  has several ‘stacked’ 

thresholds all below 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡. This essentially illustrates that the attacks successfully reached their 

goal and were near-optimal in poisoning the distribution-based model. All the thresholds moved 
below 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡 are very close to that value and to each other, which shows that the attacks are 

effective at maximizing 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 of the injected process launch pairs while keeping their PLD score 

below 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡. The anomaly category thresholds are close to each other because in the low value 

tail of the distribution there are many (injected) events close to 𝑃𝐿𝐷𝑡𝑎𝑟𝑔𝑒𝑡. 

 

Figure 8: Anomaly category thresholds (orange lines) in initial and poisoned PLD models in the 
experiment with (fshoster32.exe, chrome.exe). Black line = 𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕. Left: initial model has 2 

thresholds (categories 7 and 6) below 𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕. Right: poisoned model has 4 thresholds 

(categories 7, 6, 5 and 4) below 𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕. 
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Figure 9: Anomaly category thresholds (orange lines) in initial and poisoned PLD models in the 
experiment with (OfficeClickToRun.exe, rundll32.exe). Black line = 𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕. Left: initial model 

has 3 thresholds (categories 7, 6 and 5) below 𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕. Right: poisoned model has 6 thresholds 

(categories 7 to 2) below 𝑷𝑳𝑫𝒕𝒂𝒓𝒈𝒆𝒕. 

Takeaways: To summarize the experimental results, we see that the ‘Inject rare process launch events 
unrelated to the attack’ poisoning approach is effective and accurate at reaching the adversarial goal 
of decreasing the anomaly category of a target process launch. At the same time, such an attack may 
not always be able to reach any anomaly category of the attacker’s choice. Required volumes of 
injected process launch events are quite modest for this approach. For instance, tens of thousands of 
injected events should normally be sufficient if the target anomaly category is not 1 or 2. Such attacks 
are stealthy since they inject many process launch pairs with relatively low 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values (in the range 

of 10 - 100) and do not inject any pairs involving the target pair processes planned by the adversary 
for the actual cyberattack. 

4. Defense recommendations  

Learning from the poisoning approaches that we introduced and analysed, we present in this section 
a set of recommendations to counter model poisoning attacks that target AI-based systems using 
online distributed training and to mitigate their negative impact. 

Checking input format and validity: Attacks following the ‘decrease parent or child process launch 
count’ approach can be easily defeated by rejecting, prior to aggregation, any local records or models 
including negative 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values. When designing an online distributed training process, it is 

important to define formats and validity conditions for local models and data, listing all their 
parameters, properties, fields, etc. and defining acceptable ranges for those and other more complex 
conditions as appropriate. Each local model or data record must be checked against the defined 
conditions and rejected if any of the checks fail. One example of this procedure is sometimes referred 
to as ‘bounded norm distance’ validation, where any inputs to aggregation are verified to not exceed 
a pre-defined norm. 

Normalisation of local models and data before aggregation: The aggregation of local models into the 
global model in PLD sums together unbounded values of 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛. While this is a typical aggregation 

approach in distributed and federated learning, it allows compromised or dishonest clients to have 
greater impact on the global model. A client can submit much higher values than the other clients in 
order to influence the global model in their interest [BVH+’18, BCM+’19]. One way to address the 
unequal contributions issue is to normalise local models (or data points) prior to aggregation in order 
to control their impact. For instance, in the PLD training process, we could require clients to submit 
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local frequencies of events instead of their counters. Then the sum of the 𝑐𝑎𝑙𝑙𝑗𝑜𝑖𝑛 values in each local 

model would be equal to 1, and all the clients would contribute to the global model equally. When 
such ‘full normalisation’ is not desirable, one should look for other, softer, ways to bound impact of 
individual contributions.  

Outlier detection for poisoned local models and data: One typical approach to detection of poisoning 
attacks is based on identifying local models or data points that deviate too much from the majority of 
local models or data points submitted for aggregation. For example, a clustering algorithm can be 
applied to local models to identify outliers, that is, models which are far from all the obtained clusters 
[STS’16]. This defence approach is effective when local data points, which client contributions are 
based on, are independent and identically distributed (i.i.d.), causing local models to be similar. 
However, if the i.i.d. assumption does not apply to local data points across the clients, outlier detection 
methods will not work well, producing numerous mistakes due to the high variance of the client 
contributions.  

For the PLD model training, we analysed the PLD score distribution of different local models. The PLD 
score distribution for the local models from four different clients is depicted in Figure 10. We clearly 
see that the local models vary widely, and the i.i.d. assumption is likely not valid in the case of the PLD 
distributed training. So, outlier detection-based methods are unlikely to be effective in this case. 

 

Figure 10: PLD score distribution for local models of 4 different clients. 

Rejecting local models with a large distance to the global model: Another approach to detecting and 
removing poisoned local models is based on computing their distances to the global model [KSL’18, 
PMG+’18, SKL’17]. If the distance from a local model to the global model is too high, the local model 
is rejected. One challenge of this approach is with defining an appropriate distance function. A 
potentially greater limitation is that such techniques assume that all benign local models are close to 
the global model. Thus, similarly to the case of outlier detection-based methods, the i.i.d. assumption 
seems to be required here. If we compare the PLD score distribution of the four local models in Figure 
10 and the PLD score distribution of the global model in Figure 3, we can see that all the local models 
are significantly different from the global model. 

Detecting abnormal evolution of local models or data points over time: Instead of comparing local 
models or data points from different clients among each other or with the global model, usually 
ineffective if the i.i.d. assumption does not hold, we can monitor the evolution of individual local 
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models or data over time. The underlying assumption for such approaches is that the local models or 
data points produced by the same benign client over time are likely to be similar. So, a poisoned local 
model would likely differ significantly from the local models submitted by that client in the past. We 
can leverage the online training aspect of the PLD method for monitoring evolution of the local PLD 
models.  

To validate this approach, we randomly selected a client. In its ‘last good’ (or normal) local model, the 
client reported 556 process launch pairs and 93,423 process launch events. We injected the poisoned 
process launch events required for carrying out the first and the third poisoning approaches into the 
client’s local model. We then compared the PLD score distributions of the ‘last good’ model and the 
poisoned version in order to see how easy it is to detect the poisoning operations. We tested the 
following four attack scenarios: 

• ‘increase target process launch count’ for the (postgres.exe, conhost.exe) pair 

• ‘increase target process launch count’ for the (fshoster32.exe, chrome.exe) pair 

• ‘inject rare process launch events’ for the (fshoster32.exe, chrome.exe) pair 

• ‘inject rare process launch events’ for the (OfficeClickToRun.exe, rundll32.exe) pair 

 

 

Figure 11: PLD score distributions for normal and poisoned local models in ‘increase target process 
launch count’ attack for (postgres.exe, conhost.exe). Left: target anomaly category = 3 (13,683 

process launch events injected). Right: target anomaly category = 1 (145,920 process launch events 
injected). 

 

Figure 12: PLD score distributions for normal and poisoned local models in ‘increase target process 
launch count’ attack for (fshoster32.exe, chrome.exe). Left: target anomaly category = 3 (410 

process launch events injected). Right: target anomaly category = 1 (3,244 process launch events 
injected). 
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Comparing the PLD score distributions of the normal and poisoned local models for the ‘increase 
target process launch count’ attack in Figures 11 and 12, we clearly see differences in low PLD score 
areas. The poisoned models have higher densities in those areas, especially when targeting the 
anomaly category 1, when the attack requires to inject high numbers of process launch events. This 
indicates that poisoned local PLD models can often be detected by comparing those with earlier local 
models from the same clients. However, we also see in the left part of Figure 12 that some poisoning 
attacks that require to inject only small numbers of process launch events (hundreds in the considered 
case) are difficult to detect with model evolution monitoring techniques. 

Similar observations can be made in the ‘Inject rare process launch events unrelated to the attack’ 
case, presented in Figure 13. These poisoning attacks also resulted in significantly increased 
distribution densities in the area of low PLD scores. 

 

Figure 13: PLD score distributions for normal and poisoned local models in ‘Inject rare process 
launch events’ attack. Left: experiment with (OfficeClickToRun.exe, rundll32.exe), 9,047 events 

injected. Right: experiment with (fshoster32.exe, chrome.exe), 345,466 events injected. 

As shown in these experiments, leveraging the retraining aspect of online distributed learning is a 
promising avenue for detecting poisoned local models (or data). Assuming that a client was a benign 
participant of the training in the past (e.g., prior to getting compromised by an adversary), we can 
likely detect its poisoned local model by comparing it with earlier local models. 

Strong client authentication (countering Sybil attacks): In this study, our focus was on the case of a 
single compromised client operating in a single communication (model update) round. Poisoning 
attacks can be mitigated by normalising client contributions or can be detected by comparing 
poisoned contributions with benign ones (from other clients or from the past). The adversary can 
make poisoning attacks stealthier and / or increase their effectiveness by distributing them among 
multiple compromised clients. The adversary can actually create new fully controlled fake clients to 
increase their poisoning capability by contributing more local models or data to the training process. 
This is referred to as Sybil attacks. To avoid such attacks, it is important to implement strong client 
authentication, preventing the adversary from creating fake clients. While some defences have been 
developed to detect Sybil attacks in federated learning [FYB’18], they are based on strong assumptions 
of the similarity of local models contributed by every Sybil client and can be circumvented. Enforcing 
strong client authentication better mitigates this threat and increases the attack cost for the adversary 
(in particular, if obtaining authentication credentials requires payments). Unfortunately, there exist 
scenarios when client authentication is undesirable or impossible, for instance, due to anonymity 
requirements. 
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5. Conclusion  

In this report, we presented the SHERPA project Task 3.5 work on vulnerability of ML models to 
poisoning attacks. Since attack – and corresponding defense – approaches are usually highly case-
specific, we decided to focus on analysing a simple but realistic anomaly detection system similar to 
ones that could be used in the computer security domain and based on a model called Process Launch 
Distribution (PLD). This made it possible to comprehensively review potential model poisoning tactics 
of the adversary, consider ways to implement and optimize specific attacks following those tactics, 
and analyse the extents and impact of the attacks.  The choice of the anomaly detection system based 
on the PLD model as the study target was mainly based on: 

i. its practical relevance to the cybersecurity domain;  
ii. its relative simplicity allowing for comprehensive analysis;  

iii. its training method, which is widely used by digital service providers; and  
iv. the fact that the system is a good representative of a practically popular class of anomaly 

detection systems.  

Points (iii) and (iv) are important arguments in favour of the relevance and generalizability of the 
results that we obtained.  

We designed and demonstrated in experiments the effectiveness of three model poisoning 
approaches targeting the PLD-based system. The three implemented attacks were able to effectively 
poison the studied global model for detecting anomalous process launch events. Each attack required 
adversarial control over only a single client participating in the online distributed training process (out 
of several hundreds of clients in the experimental setup) and modifying its local model in a minimal 
manner in most cases. Since the three analysed poisoning approaches are applicable to similar 
anomaly detection systems in multiple domains, our results should be considered a strong warning 
for organisations developing and operating such systems. 

Learning from the vulnerabilities identified in our experiments, we provided and illustrated a set of 
recommendations for detecting and mitigating poisoning attacks, which we are planning to extend 
and translate to other use cases in the future project work. These recommendations can be 
summarised as follows: 

• Defining and checking the format and validity of local contributions to model training 

• Normalisation of local contributions prior to aggregating those to the global model  

• Detecting and discarding outliers in local contributions 

• Discarding local models having large distances to the global model  

• Detecting abnormal evolution of local contributions over time 

• Using strong client authentication to mitigate the risks of distributed poisoning attacks  

We note that some of these methods for countering poisoning attacks rely on certain assumptions, in 
particular, on the distribution of training data among clients contributing to model training and on 
evolution of training data over time. It is important to carefully check limitations and assumptions of 
defence techniques and their applicability to specific use cases.  
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