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Process Design : Lyophilization
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2° Drying
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Product Design : Formulation

• Stability (chemical & physical) and packaging compatibility

• Critical product temperature 𝑇𝑐 (~𝑇𝑔
′ and/or 𝑇𝑒𝑢)
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35 vial dryer enabled with 
dew point sensor,
laser absorption, and
THz spectroscopy 
for  vapour pressure

and TVIS
for in-vial behaviour
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vial

Placed within the dryer

Spectroscopy Systems : TVIS

TVIS (Through-Vial Impedance 
Spectroscopy)

Junction box

Pass 
through

spectrometer

Modified glass vial

Electrode 
system
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Through-Vial Impedance Spectroscopy

Multichannel (5)Single-vial PAT

Non- perturbing to packing of vials
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Impedance-enabled (Z-) Freeze drying microscopy (FDM)

Developed in partnership with 
Biopharma Process Systems
on Innovate UK funded FAstLyo
project ref. 133425  (2018-19) 

Inter-digitated electrode

Integrated within the FDM stage
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Example interdigitated electrode (gold on glass)

Commercial IDE – MicruxTM

10 m 10 m

Electrode gap Electrode width

Light aperture 
1.3mm diameter 

Width of the 
electrode 3.5 
mm Ø
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Design of IDE holder

IDE dimensions: 
10 x 6 x 0.75 mm

1
0

m
m

Top view

6 mm

16mm

0.85 mm*

* different height 
of IDE adaptors 
used for initial 
assessment:
• 0.85 mm
• 0.90 mm
• 0.95 mm
• 1.00 mm

*IDE height 
0.75 mm

*

IDE is lower than the 
adapter and sample height 
derived between 
difference between then 
IDE adaptor size 

Theoretical sample height 
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Tonbridge, Kent, UK
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Dielectric Loss Mechanisms

I. The polarization of the water
dipole in liquid water at 20 ˚C, with
a dielectric loss peak frequency of ~
18 GHz
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Dielectric Loss Mechanisms

II. Maxwell-Wagner (MW) polarization
of the glass wall of the TVIS vial at
+20 ˚C, with a dielectric loss peak
frequency of 17.8 kHz

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

C
′ /

 p
F

Log Frequency

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12

-C
″ 

/ 
p

F

Log Frequency

18 GHz

20.3 °C
18 kHz

Real part Capacitance

Imaginary part Capacitance

Measurement vial

𝐶𝐺

𝐶𝑠

𝑅𝑠

+
-

𝐸

- +

+

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

-

-

+

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

-

-
WaterGlass wall

Electronic 

polarization

Atomic 

polarization

Dipolar polarization 

Grotthus mechanism

H H

H H

H H

H+

Ionic diffusion

H+

HCO3
−

Na+

Cl−

H+

H+

OH-

OH-

H+

(I)

(II)

20.3 °C



28DMU LyoGroup

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

C
′ /

 p
F

Log Frequency

Dielectric Loss Mechanisms

II. Maxwell-Wagner (MW) polarization
of the glass wall of the TVIS vial at
+20 ˚C, with a dielectric loss peak
frequency of 17.8 kHz

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12

-C
″ 

/ 
p

F

Log Frequency

(I)

18 GHz

20.3 °C

20.3 °C
18 kHz

0.0056 M KCl
(II)

0.0056 M KCl

TVIS range

Real part Capacitance

Imaginary part Capacitance

Measurement vial

𝐶𝐺

𝐶𝑠

𝑅𝑠

+
-

𝐸

- +

+

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

-

-

+

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

-

-
WaterGlass wall

Electronic 

polarization

Atomic 

polarization

Dipolar polarization 

Grotthus mechanism

H H

H H

H H

H+

Ionic diffusion

H+

HCO3
−

Na+

Cl−

H+

H+

OH-

H+

K+

K+
Cl−



29DMU LyoGroup

Dielectric Loss Mechanisms

III. The dielectric polarization of ice at
−20 ˚C, with a dielectric loss peak
frequencies of 2.57 kHz
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Dielectric Loss Mechanisms

IV. The dielectric polarization of ice at
−40 ˚C with a dielectric loss peak
frequencies of 537 Hz.
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Dielectric Loss Mechanisms

I. The polarization of the water dipole
in liquid water at 20 ˚C, with a
dielectric loss peak frequency of ~ 18
GHz

II. Maxwell-Wagner (MW) polarization
of the glass wall of the TVIS vial at
+20 ˚C, with a dielectric loss peak
frequency of 17.8 kHz

III. The dielectric polarization of ice at
−20 ˚C, with a dielectric loss peak
frequencies of 2.57 kHz

IV. The dielectric polarization of ice at
−40 ˚C with a dielectric loss peak
frequencies of 537 Hz.

Note: Process II only seen in TVIS vial; in Z-
FDM process II is replaced by electrode
polarization impedance)

TVIS range
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TVIS publications suggestive of Z-FDM applications

• Smith, G. & Jeeraruangrattana, Y. 2019, "Chapter 5 Through-Vial Impedance Spectroscopy (TVIS): A New Method 
for Determining the Ice Nucleation Temperature and the Solidification End Point " in Freeze Drying of 
Pharmaceutical Products, eds. D. Fissore, R. Pisano & A. Barresi, 1st edn, CRC Press, Florida, United States

• Jeeraruangrattana, Y., Smith, G., Polygalov, E. and Ermolina, I. (2020) Determination of ice interface temperature, 
sublimation rate and the dried product resistance, and its application in the assessment of microcollapse using 
through-vial impedance spectroscopy. European Journal of Pharmaceutics and Biopharmaceutics, 152, pp. 144-163 

• Smith, G., Jeeraruangrattana, Y., Ermolina, I. (2018). The application of dual-electrode through vial impedance 
spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer 
coefficient in lyophilization process development. European Journal of Pharmaceutics and Biopharmaceutics

• Smith, G., Arshad, M.S., Polygalov, E., Ermolina, I., McCoy, T.R., Matejtschuk, P. (2017). Process Understanding in 
Freeze-Drying Cycle Development: Applications for Through-Vial Impedance Spectroscopy (TVIS) in Mini-pilot 
Studies. Journal of Pharmaceutical Innovation, 12 (1), pp. 26-40 Key observation was the potential to measure 
temperature non-invasively

• Arshad, M.S., Smith, G., Polygalov, E., Ermolina, I. (2014). Through-vial impedance spectroscopy of critical events 
during the freezing stage of the lyophilization cycle: The example of the impact of sucrose on the crystallization of 
mannitol. European Journal of Pharmaceutics and Biopharmaceutics, 87 (3), pp. 598-605

• Smith, G., Arshad, M.S., Polygalov, E., Ermolina, I. (2014). Through-Vial Impedance Spectroscopy of the Mechanisms 
of Annealing in the Freeze-Drying of Maltodextrin: The Impact of Annealing Hold Time and Temperature on the 
Primary Drying Rate. Journal of Pharmaceutical Sciences, 103 (6), pp. 1799-1810

• Smith, G., Arshad, M.S., Polygalov, E. and Ermolina, I. (2013) An application for impedance spectroscopy in the 
characterisation of the glass transition during the lyophilization cycle: The example of a 10% w/v maltodextrin 
solution. European Journal of Pharmaceutics and Biopharmaceutics, 86 (3 Part B), pp. 1130-1140.

Nucleation Temperature and the Solidification End Point
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Dielectric relaxation of ice

5 mL water in
10 mL glass TVIS vial 
(1 pair of 10/19 mm 
height/width electrodes)

2 µL water over IDE 
(90 pairs of gold interdigitated electrodes) 

10/10 m electrode width/spacing
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Observations on Sample Size

Case study of 5% w/v Sucrose Solution 

Applications in freezing (nucleation temperature, 
ice growth rates, solidification end point) 
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Nucleation of 0.5µL of 5% 
Sucrose
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Nucleation of 0.5µL of 5% 
Sucrose

A. Nucleation
Temperature/time

B. Ice solidification
end point time/temp
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Nucleation of 0.5µL of 5% 
Sucrose

A. Nucleation
Temperature/time

B. Ice solidification
end point time/temp

Time difference between time 
points A and B is the ice 
solidification time and hence 
provides an opportunity to 
measure ice growth rates at the 
mean ice growth temperature (C)Ice solidification

time = 1.2 s

C. Mean ice growth 
Temperature – 17.9
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Nucleation of 0.5µL of 5% 
Sucrose

3

2

65

4

1

1

2

3

4

5

6

A. Nucleation
Temperature/time

B. Ice solidification
end point time/temp
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Ice growth rates

• Assumption: unfrozen fraction comprises 80:20 ratio of sucrose to water

• 1 mL of 5% w/w sucrose has 0.95 g water 

• It follows that 0.0125 g (0.05 x 20/80) is bound and produces 0.9375 g ice

Estimated from:

0.5 µL of 5% sucrose (produces 4.688E-04 g ice)

• Ice formation time = 1.2 s (12 data points)

• Ice growth rate: 4.688E-04 / 1.2 = 0.39 mg/s

Relevance in formation design : 
ice crystal size? Dry layer resistance Rp and drying rates
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Freeze drying of 5% sucrose (0.05μL)
Studied by Image analysis

Dielectric loss or dielectric permittivity analysis?Applications in primary drying 
(drying rate, product collapse) 
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Time period 
for image 
analysis by 
Matlab

FDM protocol

NB: Temperature and pressure 
measured on FDM every 100 ms

FDM freeze-drying 
of 5% sucrose 
solution (0.05 μL)

set temperature 
for the FDM stage

Liquid state
A

ice growth

B
ice solidification

C
sublimation

D
end of primary drying

E
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MATLAB® Image analysis (pixel counting)

1. Global templet generation – dried product image

2. Threshold test image – frozen image or drying stage image

Global pixel : 
527515

MATLAB®

Dried product image

Product during drying

MATLAB®
Pixel for central 
area: 86317

FDM primary-drying 
of 5% sucrose soln
(0.05 μL) at -35˚C
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Pixel analysis

NB: Temperature and pressure 
measured every 100 ms

A: Application of vacuum 

vacuum applied

vacuum stabilises
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Drying rate determination
76µm

0.8 mm

0.62 mm
Area of perimeter

0.00342 cm2

NB: Sample thickness assumed from the 
Lactose sample analysed in the same setup.

Weight fraction of sucrose 0.05 (5% Sucrose)

Weight fraction of water 0.95 i.e. 95 % water

Weight fraction of bound water (1) 0.0125

Weight fraction of freezable water 0.9375

Sample volume 0.05 µL

Freezable water 0.0469 µL

Freezable water in mg 0.0469 mg of ice

Total pix before drying starts 466873

1 pixel (a) 1.004E-07 mg of ice

Gradient of linear part (b) 132110 pixel per min (yellow line)

Drying rate (a x b) 0.0133 mg min−1

Drying rate (B) 0.00080g h−1

Area of perimeter of sample (A) 0.00342 cm2

Specific drying rate (B/A) 0.233g h−1 cm−2

(1) based on 80:20 ratio of sugar to water in freeze-concentrated solution

Example drying rate from a 10 mL glass tubing vial is 0.25 g h-1

Vial diameter : 22 mm  Internal area : 3.8 cm-1

Specific drying rate : 0.065 g h−1 cm−2

Difference due to differences in heat transfer etc.
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Drying rate at different gradient

NB: Temperature and pressure 
measured every 100 ms

Application of vacuum 

B

C

B

B

Drying Rates
• At A Initial – 0.00080g h-1

• At B: Middle – 0.00050 g h-1

• At C: Middle – 0.00041 g h-1

A

B 

C 
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Freeze drying of 5% sucrose (0.05μL)
Studied by Z-FDM

Dielectric loss or dielectric permittivity analysis?
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Drying: Image analysis vs 
Capacitance during drying of 
0.05 µL 5%sucrose

I II III IV

Linear relationship between real part 
capacitance C’ and pixel count (ice 
content) confirms the opportunity to 
use Z-FDM for drying rate estimation

A

B

I: Application of vacuum. Primary drying starts
II: Both gradients of imaginary and real part 
capacitance change towards the end of drying
II : end of primary drying
IV: Ramped to RT and capacitance remains 
unchanged with temperature

B

A
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Annealing of 5% sucrose (0.05μL)
Studied by Z-FDM

Dielectric loss or dielectric permittivity analysis?
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Full process

A

B

C

D E

Capacitance data measured at 1.6KHz

0.05 µL 5%sucrose

Annealing stages
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Annealing (1.6KHz) 0.05 µL 5%sucrose

Structural 
changes on 
re-heating
decrease with 
each 
annealing

Excursions in 
temperature 
just above 
the glass 
transition
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Collapse of 5% sucrose (0.5 µL)

Studied by Z-FDM 

Applications in primary drying : product collapse 
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TASC – image analysis of sucrose solution 

A

Adapted from: Ward, K. and Matejtschuk, P., 2019. Chapter 1 Characterization of 
Formulations for Freeze-Drying In: K. R. WARD and P. MATEJTSCHUK, eds, 
Lyophilization of Pharmaceuticals and Biologicals: New Technologies and 
Approaches. 1 edn. New York: Humana Press, pp. 1-33. 

Reduces operator error in the analysis of the 
collapse temperature and can use for drying rate.

Tc −32.1°C

Tc(onset) −33.3˚C

Images coinciding with TASC features 
(A) onset of collapse at −33.3°C, and 
(B) full collapse occurring at −32.1°C

B

A

B

Collapsed layer
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Take home messages (from measurements at 1.6 KHz)

• Real and imaginary part capacitances can be used for the 
determination of ice nucleation and ice growth rates

• Pixel analysis works for drying rate determination

• Real capacitance has a linear relationship with pixel count, and 
hence ice mass, so can be used for drying rate determination

• Imaginary part capacitance can be used to study the annealing 
process but requires further work in order to be able to 
determine the glass transition temperature.

o Selection of a higher measurement frequency is likely to provide the 
answer to the glass transition temperature assessment

• Step changes in drying rate (observed from real part capacitance) 
can be used to determine the collapse temperature
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Thank you for listening

Any questions?

Geoff Smith, PhD
Prof. of Pharmaceutical Process Analytical Technology
School of Pharmacy

gsmith02@dmu.ac.uk

www.dmu.ac.uk/tvis

mailto:gsmith02@dmu.ac.uk
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Publications
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Global Sales of Top 10 Lyophilized Drug Products

The prevalence of stability challenges for complex APIs and biologics has resulted 

in more pharmaceutical and biotech manufacturers turning to lyophilization 

resulting in 13.5% annual growth in freeze-drying over the last five years. 

https://lubrizolcdmo.com/blog/lyophilization-of-pharmaceuticals-an-overview/

https://lubrizolcdmo.com/blog/lyophilization-of-pharmaceuticals-an-overview/
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Impedance Spectroscopy

𝒇 = 𝟏𝟎𝟎 𝒌𝑯𝒛𝒇 = 𝟏𝟎𝟎 𝒌𝑯𝒛
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Through-Vial Impedance Spectroscopy

Multichannel (5)Single-vial PAT

Non- perturbing to packing of vials

Thin (0.533 mm) 
flexible cables 

(0.5 - 2 m length)
Stoppering unaffected

Temperature calibration 
using nearest neighbour vial(s)

Low thermal mass 
electrodes

no interference with heat 
transfer & drying rates

Non-sample invasive
no impact on ice nucleation

TC vialTVISplain
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Freezing Annealing 
(optional) 

1° Drying 2° Drying

Freeze-drying

Freeze Dryer Shelf Freeze Dryer Shelf

Dried layer

Product secondary

Freeze Dryer Shelf

Ice layer

AnnealFreeze

Freeze Dryer Shelf

Ice layer

Freeze Dryer Shelf
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Radiation
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Convection
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Primary drying
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